平成 20 年度
スーパーサイエンスハイスクール
研究開発実施報告書
（平成 20 年度指定・第 1 年次）

平成 21 年 3 月
大阪府立大手前高等学校
巻頭言

校 長 斎 藤 良 昭

平成 20 年 4 月 9 日にスーパーサイエンスハイスクールの指定をいただいてから 1 年間、試行錯誤を繰り返しながらなんとか年度末を迎え、本報告書をまとめることができました。

大手前高校は明治 19 年に設立された大阪府女学校を前身とし、以来 120 余年の長きにわたり、府民の高い期待を集め、各界で活躍する人材を送り出してきた学校です。とくに、平成 5 年に理数科が普通科に併置されてからは、高い意欲を持つ理数系の生徒が多く集まる学校となっています。

スーパーサイエンスハイスクールは「将来の国際的な科学技術系人材の育成」を目標としますが、この点については大手前高校でもこれまでから理数科を中心に努力してきたところです。しかし、近年は、難関大学進学をもてはやす世相があり、生徒の関心も同年齢層間の比較や競争に向かう傾向があり、「科学する心」や豊かな感受性、興味のある学問分野への情熱の弱まりに対して、危機感を感じていました。

その中で、平成 14 年 7 月、大阪府教育委員会から「次代をリードする人材育成研究開発重点校」の指定を受けたことをきっかけに、「自ら学ぶ力の育成」「コミュニケーション力の育成」「進路を見つけ出す仕組み」「人間性の育成」「国際感覚の涵養」を目標とする取り組みを進めました。その成果の上に、次の段階として「科学する心」と国際的に通用する卓越した能力をもつ人材育成のための教育課程研究を取り組むのは、大手前高校の教育にとって極めて有効であり、同じ問題関心をもつ多くの高校に役立つことと思います。

平成 19 年度ほぼ 1 年間をかけて、スーパーサイエンスハイスクール指定でどういう取り組みをするか検討しました。その結果、理数系の発想力を開発することを目的とする「理数コミュニケーション力」と海外の高校生との共同研究を視野に入れた「高校生国際科学会議」の実施を打ち出しました。ともに現状では大変困難な課題ではありますが、生徒の限りなき可能性に期待し、勇気と努力によって道は開けると信じて計画いたしました。

4 月から本事業を始めたところ、幸いにも理数科の生徒の積極的な努力と全教職員による取り組みによって、本文にある通り、なんとか予定通りに進められたと思います。先行研究に学びながらの 1 年間でしたのが、慣れないうちに、不十分な点や認識不足の点が多々あることと存じます。来年度はこの反省の上に立って、よりスムーズに研究が進むよう努力して参ります。

最後になりましたが、研究過程で多くの先発指定校の先生方、大学等研究者の皆様の支援とご協力をいただき、本当にありがとうございました。また、運営指導委員の皆様、府教育委員会の皆様には、ご多忙の中暖かい励ましとご指導を賜りました。心からお礼申し上げます。
第6章 高校生国際科学会議
1 メコン5カ国国際会議..68
2 英語集中講座..70

第7章 交流活動
1 スーパーサイエンスハイスクール生徒研究発表会.........................72
2 大阪府教育委員会表敬訪問..75
3 天王寺高校課題研究発表会への参加................................77
4 住吉高校課題研究発表会への参加................................78
5 大阪府生徒研究発表会（サイエンスフェスティバル）における発表......79

第8章 広報活動
1 中学校訪問授業..81
2 SSSH新聞...83

第9章 研究課題への取り組みの効果とその評価
1 評価の対象・観点・方法..84
2 取り組みの評価..84

第10章 研究開発実施上の課題および今後の研究開発の方向
1 研究開発実施上の課題...89
2 今後の研究開発の方法...90

関係資料
1 教育課程表...91
2 研究組織の概要...92
3 平成20年度大阪府立大手前高校SSH運営指導委員会の報告........93
4 アンケート...96
5 SSSH新聞...109
別紙1-1

大阪府立大手前高等学校

平成20年度スーパーサイエンスハイスクール研究開発実施報告（要約）

①研究開発課題
大阪府立大手前高等学校における「『科学するこころ』の醸成と、国際感覚豊かな次代の科学者養成のための研究」
（A）コミュニケーション力ベースにした、国際感覚豊かな「科学分野における日本や世界的リーダー」を育成するプログラムの開発
（B）論理的に分析・判断・検証する力の育成を通じて、広い視野に立った「科学するこころ」の醸成と高度な専門性を有する次代の科学者の養成
（C）環境・生命などの全地球的視点に立ったものの見方を身につけ、世界に向けての積極的な情報発信の実践的研究

②研究開発の概要

| ①日本語・英語によるプレゼンテーション能力、論文作成能力を養成する研究[A] |
| ②国際感覚豊かな理系教養人としての『理数コミュニケーション力』開発研究[A・B] |
| ③英語による講演の受講、来年度の『高校生国際科学会議』に向けての研究[A・C] |
| ④科学への志向・興味を喚起する、『プレ・サイエンス探究』『数リンピック』の実施[A・C] |
| ⑤論理的説明能力を養成するための統計的手法の習得に関する研究[B] |
| ⑥論理的説明能力に重点を置いた課題研究[B] |
| ⑦大学・研究所との効果的連携のありかた[C] |
| ⑧本校普通科および小中学校への研究成果の積極的な還元『楽しい実験教室』『科学の扉』[C] |

③平成20年度実施規模
理数科生徒全員（各学年2クラス）、普通科各学年の理系進学希望者、理数系の部活動部員以上約500人（一部の事業については全校生徒を対象とする）

④研究開発の内容

〇研究計画
①『プレ・サイエンス探究』『数リンピック』の実施
科学への興味・関心を引き出すための『プレ・サイエンス探究』『数リンピック』を
1年生に対し、前・後期を通じて取組む。
②学校設定科目『信念（まこと）』の実施
研究の方法・発表技術・英語力を身につけた科目『信念（まこと）』を、1年生に対し、
後期に実施する。
③『集中講座Ⅰ』（東京研修）の実施
『まこと』の一環として実施する『集中講座Ⅰ』（東京研修）を1年生に対し、10月頃に2泊3日間で実施する。
④学校設定科目『理想（のぞみ）』の先行的実施
来年度２年生の前期に単位を認定する科目『理想（のぞみ）』を、今年度１年生に対し取組みはじめて、数学分野の科学的検証法をスキルとして身につける基礎力を養う。
⑤『集中講義Ⅱ』（サマースクール）の実施
数学プレゼンテーションの研究発表や英語による講義を受ける宿泊学習『集中講義Ⅱ』（サマースクール）を今年度の2年生に対し7月に実施する。
⑥学校設定科目『サイエンス探究』の実施
2年生の後期から3年生の前期にかけて単位を認定する、理数に関する課題研究『サイエンス探究』を1年次より取り組みをはじめる。また、2年生において『理数セミナー』の授業において課題研究の試みを行う。
⑦学校設定科目『SS数学』『SS物理』『SS化学』『SS生物』の実施
学校設置教科『SS理数』を設置し、科目『SS数学Ⅰ』『SS数学Ⅱ』『SS数学Ⅲ』『SS物理』『SS化学』『SS生物』を行う。理数教育の教材開発等を行う。
⑧国際性の育成に関する取り組みの実施
海外の学生たちを招き、国内で『高校生国際科学会議』を来年度の3月頃に開催する。そのために、国際性の育成等に関する取組みを今年度1年生に実施する。
⑨大学・研究機関・企業等との連携
先端科学技術との出会いや体験を、京都大学・大阪大学等近隣の大学・研究機関・企業等の協力を得て、短期・長期の両面で実施する。
⑩SSH生徒研究発表会・交流会等への参加
全国・大阪府等で行われるSSH生徒研究発表会・交流会、学会等での発表会・交流会等に参加する。
⑪成果の公表・普及
地域や、小中学校生・同世代の高校生および他校の教員に対して研究成果を還元する『楽しい実験教室』、Web上での『科学の扉』等を実施し、成果の普及に努める。
○教育課程上の特例等特記すべき事項
・教科「理数」をなくし、学校設定教科「SS理数」を新設する。
・教科「情報」2単位を、学校設定教科「SS理数」に組み込む。
○平成20年度の教育課程の内容
学校設置科目として、『SS 数学Ⅰ』、『SS 数学Ⅱ』、『SS 数学Ⅲ』、『信念（まこと）』、『理想（のぞみ）』、『SS物理』、『SS化学』、『SS生物』、『サイエンス探究』、『集中講座Ⅰ』（東京研修）、『集中講座Ⅱ』（サマースクール）を設ける。
○具体的な研究事項・活動内容
①『大手前数リンピック』 論理的思考力を高めるプログラム研究
②『数学レポート』作成指導 調査研究法の練習とレポート作成力の育成
③特別講演・講義実施
理数への興味・関心を高めるプログラム研究

④『集中講座Ⅰ』（東京研修）
理数への効果的なモチベーションの育成研究

⑤『集中講座Ⅱ』（サマースクール）
プレゼン能力（内容）の育成研究

⑥『信念（まこと）』
レポート・プレゼン能力（英語）の育成研究

⑦メコン5カ国国際会議
英語によるプレゼン能力の育成

⑤研究開発の成果と課題
○実施による効果とその評価

SSH意識調査・SSHアンケート・各事業での検証等から、SSHに参加したことで科学技術に関する興味・関心・意欲が増したとする生徒（76.3％）が、効果がなかったとする生徒（8.8％）を大きく上回り、素晴らしい成果が得られた。また、理科・数学に対し期待していた生徒（71.3％）が、SSH事業後に増加（85％）していたのは特に重要と考えている。更には、SSHの行事に参加できたことを嬉しく思い今後とも積極的に参加していきたいという生徒が80％となった。これらの結果から、生徒の意欲・関心を高めるという観点からもほぼ予定通り進行していると考える。また、本年度は日本数学オリンピック（成績優秀者）、化学グランプリ（大賞・銀賞）を始め、科学オリンピック・コンクールでは過去最高の入賞・参加者があった。今までの本校理数数の取り組み成果とSSHによる効果の現れと考えられる。

○実施上の課題と今後の取組

各取り組みの課題はそれぞれ以下の通りである。

(1) 『フレ・サイエンス探究』
① 『大手前数リンピック』
より多くの生徒の参加ができるような教材の開発
② 『数学レポート』作成指導
数学学習の基幹部分をなす「SSH数学」への正のフィードバックの促進
③科学コンクール
参加する意欲の向上と支援のシステム作り
④特別講演・講義の実施
より効果を上げるためのスケジュール調整と他の事業との接続法

(2) 宿泊研修
① 『集中講座Ⅰ』（東京研修）
プログラムの精選による過密スケジュールの解消
② 『集中講座Ⅱ』（サマースクール）
プレゼン発表の内容・技術の充実

(3) 学校設定科目
① 『信念（まこと）』
校内行事とSSH行事のスケジュール調整による効率化
②『理想（のぞみ）』
統計学への意欲を高める工夫・教材研究
③『SS物理』
土曜講座のプログラムと講義内容との教材調整
①『SS化学』
講義と実験とのバランスとコンピュータ機器の活用
⑤『SS生物』
身の回りの自然調査、博物館レポートの充実
⑥『SS数学』
発展的内容の教材精選と課題研究への接続
（4）『サイエンス探究』
次年度から本格的に始まる生徒の希望調整の方法
（5）『高校生国際科学会議』
①『サイエンス探究』での共同発表
発表国との打ち合わせなどを通じた交流のマナーや、国際会議の手法についての指導
②語学研修
できるだけ多くの生徒の参加を促すための日程調整

第二年次（平成21年度）としては、本年度の研究成果を踏まえ、『育てよう「科学するこころ」（SSH本格実施）』をテーマに研究開発を進めていく。具体的には、先の研究開発施上の問題点に対処し、高校生国際科学会議を開催する。これを核に据えて、
①プレゼンテーション能力の開発プログラムの完成
②論理的思考能力の育成のための企画充実
③地域への成果の還元、研究成果の外部への発信
に重点をおき取り組んでいきたい。
また、評価法についても、
①初年度との対比による意識調査比較（生徒・保護者・教員）
②到達度を考慮した調査比較
③行動の変容
もとに分析を進めるたいと考えている。
平成20年度スーパーサイエンスハイスクール研究開発の成果と課題

①研究開発の成果
（根拠となるデータ等を報告書「④関係資料」に添付すること）
本校の研究を進めるにあたり、第一年次は、『見つけよう「科学するこころ」（SSHへのスムーズな移行）』を重点テーマに以下の成果を得ることができた。
●プレゼンテーションの基本となる技術の習得がほぼ図れた。また、高校生国際科学会議開催に向けての英語でのプレゼンテーションに慣れることができた。国語力（読む・書く）から始まり英語でのプレゼンテーションにつなげていくプログラムは、本校の取り組みの中でも重要な1つであった。教科間の連携と明確な目的設定のため、生徒・保護者・教員の評価も高かったものと考える。
①1年で英語による発表について自信を持ってできる生徒が増えた。
②国際会議での発表、他校（SSH校）での英語によるプレゼンテーション発表など、行事とリンクしその効果が高まった。
③保護者の目から見ても、国際性に重点を置いた本校のSSH事業の取り組みが理解された。（根拠：第4章1、SSH意識調査・本校SSHアンケートより）
●研修・講演会等を行い、生徒の科学に対するモチベーションを高めることができた。
集中講座Ⅰ、集中講座Ⅱでは充実したプログラムを実施し、科学技术に対する生徒の意欲・関心を高めることができた。また、数学オリンピック本選では成績優秀者、化学グランプリでは大賞・銀賞を受賞し、科学オリンピック・コンクールの参加者数・入賞者数も過去最大の数となった。
①興味・関心を高めるはそれだけにとどまらず、学習意欲へも深く影響することが分かった。
②研修、講演会等の取り組みは、SSHプログラムにおいて興味・関心・意欲を高めるのに強く関係しており、相乗効果により生徒により効果的に影響していることが分かった。
③宿泊研修（集中講座Ⅰ・集中講座Ⅱ）は、生徒の科学への関心を高めるのに重要な役割を果たした。また、英語による発表力の必要性を感じる機会となった。
④研修会への希望参加が急増したことや、プレゼン発表会への積極的な参加が目立つようになった。
（根拠：SSH意識調査、本校SSHアンケート、第3章、生徒の変容より）
●論理的説明能力を鍛えるプログラムに連続性ができ一定の成果がみられた。
①サマースクールの成果により、SSH研究発表会で「ポスターセッション賞」に選ばれた。
②成果物として「数リンピック第一集」（60ページの冊子）を作成した。
③日本数学オリンピックで成績優秀賞、化学グランプリで大賞・銀賞を受賞した。
④科学オリンピック・コンクールでの入賞者・参加者が過去最高となった。
⑤「大手前高校数学談話会」（優秀レポート、優秀作品、オリンピック問題の解説など生徒が企画する自由参加型の談話会）を実施した。
⑥教員が発展的な内容を重視してとりくむようになり、その結果、生徒の理数に対する理論・原理への興味の向上に関して一定の手応えを感じていることも分かった。

（根拠：第2章、SSH意識調査より）

●保護者や中学生に対しSSHの意義を伝えることができた。
保護者らは、各行事における生徒の様子から、SSHの意義やその効果についてそれなりの効果が得られたようである。また、地域の中学生に対しては訪問授業の形で伝えることができた。
①生徒の科学への関心が高まったことを保護者も認識している。
②中学生に対して訪問授業を行い好評を得た。（根拠：SSH意識調査、第8章より）

●SSH運営指導委員会及びSSH運営委員会等の校内組織を発足させ、学校全体でSSH事業に取り組むよう努めた。また、多くの教員がSSHに対して意義があるという意識を持つことがわかった。全体協力がSSH事業全般的成功につながるという考えから、初年度ということもあり組織作りに取り組んだが、まだ不十分であり、学校全体で取り組んでいるとは言い難い状態である。今後はSSH事業に関係する教員も増えてくるので積極的に情報発信し実際に関わる教員の割合をさらに高めていきたいと考えている。
①26回の運営会議を持ち、代表者8人を中心に全体の企画が進めることができた。
②SSHに対して意義あるという意識を持つ教員が多いことがわかった。
③ほぼ毎回の職員会議でSSHの取り組み内容について報告をし、進捗状況についての情報を共有できた。（根拠：本文第1章4、SSH意識調査より）

②研究開発の課題

第二年次（平成21年度）としては、本年度の研究成果を踏まえ『育てよう「科学するこころ」（SSH本格実施）』テーマに研究開発を進めていく。高校生国際科学会議を中心に据えて、
①プレゼンテーション能力の開発プログラムの完成
②論理的思考能力の育成のための企画充実
③地域への成果の還元、研究成果の外部への発信に重点をおき取り組んでいく。
多くの生徒の参加ができる教材開発とフィードバック、スケジュール調整と他事業との接続法、プレゼン発表の内容・技術の充実、統計学への意欲を高める工夫・教材研究・活用法の研究、サイエンス探究、国際会議における交流のマナー・国際会議の手法の指導などに取り組んでいく。
第1章 研究開発の概要

１ 学校の概要

次代の日本をリードする人材の育成・ゆたかな人間性の育成を目指し数々の先進的な取り組みを行っている。理数科・普通科を設置し、二学期制・単位認定のもとで、学習活動、国際交流、コミュニケーション力の育成に力を入れている。平成20年度にスーパーサイエンスハイスクールの指定を受けた。

（1）設置課程

<table>
<thead>
<tr>
<th></th>
<th>通学区域</th>
<th>1年</th>
<th>2年</th>
<th>3年</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通科</td>
<td>第2学区</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>理数科</td>
<td>大阪府全体</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

（2）教育方針 強き信念（まこと）・高き理想（のぞみ）

1. 基礎学力を充実させ、自己教育力を高め、自己実現の達成を図る。
2. 知・徳・体の調和のとれた教育をとおし、豊かな人間性を涵養する。
3. 国際社会に貢献し得る人間の育成を期す。

（3）学校の沿革

明治19(1886)年 師範学校女学科より独立、「大阪府女学校」として開校。
以後、大阪高女、大阪第一高女、中之島高女、梅田高女と改称。
大正12（1923）年「大阪府立大手前高等女学校」と改称、現在地に新築移転。
昭和23(1948)年 学制改革により現在の「大阪府立大手前高等学校」となる。
北野高等学校との間で職員・生徒の交流、男女共学を実施。
昭和61（1986）年 創立100周年記念式典を行う。
平成3(1991)年 本館改築竣工。
平成5(1993)年 理数科設置。
大阪府よりエル・ハイスクールの指定を受ける。
平成18(2006)年 創立120周年記念式典を行う。
平成20(2008)年 文部科学省よりスーパーサイエンスハイスクールの指定を受ける。
2 研究開発の概要

（1）研究開発の課題
将来の国際的な科学技術系人材の育成を図るためには、自ら積極的に問題を発見し解決する力や、論理的問題を捉える力、表現する力や説明する力などのコミュニケーション力を育成するとともに、科学に関する興味・関心を喚起し、意欲の向上を図る取組について、より効果的に実施する必要がある。また、国際感覚や、実践的英語力を体験的に学習する機会を充実させる必要がある。

論理的思考を媒介として情報を「収集・判断・検証」し、それを「表現・発信」する力＝『理数コミュニケーション力』を身につけ、自然や科学に対して畏敬の念を持ち、自らが積極的に働きかけることにより、物事の真実や概念を明らかにしようとする「科学のこころ」を養成することが、国際的に活躍する次代のリーダーを育成することにつながるという仮説に基づき、以下の取り組みに重点をおいた指導を行う。

（A）コミュニケーション力をベースにした、国際感覚豊かな「科学分野における日本や世界のリーダー」を育成するプログラムの開発

（B）論理的に分析・判断・検証する力の育成を通じて、広い視野に立った「科学のこころ」の醸成と高度な専門性を有する次代の科学者となる基礎力の養成

（C）環境・生命などの全地球的視点に立ったものの見方を身につけ、世界に向けての積極的な情報発信の実践的研究

これらを実現するために、以下の研究開発を行う。

① 日本語・英語によるプレゼンテーション能力・論文作成能力を養成する研究[A]
② 国際感覚豊かな理系教養人としての『理数コミュニケーション力』開発研究[A・B]
③ 英語による講演の受講・『高校生国際科学会議』の開催と発表[A・C]
④ 科学への志向・興味を喚起する、理科・数学の『プレ・サイエンス探究』『数リンプック』の実施[B]
⑤ 論理的説明能力を養成するための統計的手法の習得に関する研究[B]
⑥ 論理的説明能力に重点を置いた課題研究[B]
⑦ 大学・研究所との効果的連携のありかた[C]
⑧ 本校普通科および小中高校への研究成果の積極的な還元『楽しい実験教室』『科学の扉』[C]

※A、B、Cは3つの研究開発課題に対応
※「科学のこころ」とは、自然や科学に対して畏敬の念を持ち、自らが積極的に働きかけることによって物事の真実や概念を明らかにしようとする志向を意味する。
※『理数コミュニケーション力』とは、理数を志す人にとって必要な力、すなわち、論理的思考を媒介として、情報を「収集・判断・検証」（インプット）し、それを「表現・発信」（アウトプット）していく力を意味する。
（2）研究開発の項目
① 科学への興味・関心を引き出すための『プレ・サイエンス探究』『数リンピック』を1年生の前後期を通じてじっくりと取り組む。
② 研究の方法・発表技術・英語力を身につける科目『信念（まこと）』をSS科目として新設し、1年生の後期に実施する。
③ 『信念（まこと）』の内容を充実・発展させる『集中講座Ⅰ「集中セミナー」』（以下、『集中セミナー』という）を1年生の12月に2日間実施する。
④ 数学分野の科学的検証法をスキルとして身につける科目『理想（のぞみ）』をSS科目として新設し、2年生の前期に実施する。
⑤ 数学プレゼンテーションの研究発表や英語による講義を受ける宿泊学習『集中講座Ⅱ「サマースクール」』（以下、『サマースクール』という）を2年生の7月に実施する。
⑥ 理数に関する課題研究『サイエンス探究』を2年生の後期から3年生の前期にかけた1年間で実施する。
⑦ 学校設定教科『SS理数』を設置し、1)～6)のSS科目に加えて、科目『SS数学Ⅰ』『SS数学Ⅱ』『SS数学Ⅲ』『SS物理』『SS化学』『SS生物』を設置する。
⑧ 海外の学生たちを招き『高校生国際科学会議』を2年生の3月頃に開催する。
⑨ 先端科学技術との出会いや体験を通じて、生徒の科学に対する潜在能力を触発し深化させる連携事業を、京都大学・大阪大学等近隣の大学の協力を得て短期・長期の両面で実施する。
⑩ SSHクラスで実施して得られる結果をもとに、科学への興味を高める「理科大好き」、「数学大好き」につながる教科指導法を開発し、普通科における理数教育の改善につなげる。
⑪ 地域の小中学校生、同世代の高校生および他校の教員に対して、研究成果を還元する『楽しい実験教室』『科学の扉』など連携を進める。
1年前期から
『プレ・サイエンス探究』
『数リンピック』

1年後期
科目「信念まこと」
発表の工夫
情報収集
課題設定
※相互批判
英語の総合力
＋「集中セミナー」

2年前期
科目「理想」
統計学（検定）
科学的考察・判断・検証する力の習得
論理的説明能力
※『サマースクール』
（数学研究発表）

2年後期〜3年前期
課題研究『サイエンス探究』
※『課題研究発表会』『高校生国際科学会議』
3 研究開発の運営組織
① SSH運営指導委員会
SSH研究開発事業に対して、専門的な見地から指導・助言・評価をいただく。構成員は、大阪府教育委員会、大阪府教育センター、近隣の大学・企業等の専門家、および本校校長。
② SSH運営委員会
主としてSSH事業に関する学校運営に関係する全般的・総合的な内容を担当する。SSH研究開発の企画・推進・調整等を行い、必要に応じて校務分掌の各係、委員会や学年会等と連携する。また、SSH教育課程について、SSH実施の評価・分析、SSH研究開発の報告なども担当する。構成員は、校長、教頭、SSH主任、教務主任、進路指導主任、数学科主任、理科主任、理数科主任、当該学年主任とする。
③ SSH研究開発委員会
主としてSSHの諸事業の綿密な計画と実施を担当する。新設した学校設定科目の教材開発や計画の立案、大学や企業等連携、諸機関との打ち合わせ、予算に関する調整、生徒への説明・連絡、校内発表・校外発表の企画などを担当する。構成員は、理科・数学の教員を中心とし、他教科からも協力を得る体制を整える。
④ SSH予算委員会
SSH研究開発事業に対する備品・消耗品、講師謝礼金、その他の経費について、企画・調整を行い、計画的な運用を実施する。事業経費総括案の作成、物品購入時の入札資料作成、事業経費報告書等の作成なども担当する。構成員は、校長、教頭、事務部長、主査、互選による予算委員、SSH主任とする。
4 研究開発の経過報告

(1) SSH運営委員会

<table>
<thead>
<tr>
<th>回</th>
<th>月</th>
<th>日</th>
<th>内 容</th>
<th>回</th>
<th>月</th>
<th>日</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>21</td>
<td>年間計画・予算等の作成</td>
<td>14</td>
<td>9</td>
<td>29</td>
<td>SSH 科目「まこと」のテーマ等</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>15</td>
<td>事業計画・経費説明書の報告</td>
<td>15</td>
<td>10</td>
<td>16</td>
<td>東京研修の報告</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>19</td>
<td>報告書の提出方法について</td>
<td>16</td>
<td>10</td>
<td>22</td>
<td>SSH 研究部構想について</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
<td>各部会での取り組み確認</td>
<td>17</td>
<td>10</td>
<td>30</td>
<td>SSH 運営指導委員会について等</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>9</td>
<td>SSH 生徒研究発表大会の件等</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>SSH 新聞について</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>19</td>
<td>評価法についての検討</td>
<td>19</td>
<td>11</td>
<td>13</td>
<td>国際科学会議について</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>国際科学会議の検討</td>
<td>20</td>
<td>11</td>
<td>19</td>
<td>特別講義・講演について</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>3</td>
<td>サイエンス探究の検討</td>
<td>21</td>
<td>11</td>
<td>27</td>
<td>次年度役割分担について</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>7</td>
<td>評価法についての検討</td>
<td>22</td>
<td>12</td>
<td>17</td>
<td>次年度の事業計画について</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>4</td>
<td>SSH 新聞、Web ページ等検討</td>
<td>23</td>
<td>1</td>
<td>8</td>
<td>次年度の事業計画について</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>18</td>
<td>東京研修について</td>
<td>24</td>
<td>1</td>
<td>22</td>
<td>住吉高校発表会について等</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>22</td>
<td>サイエンス探究等</td>
<td>25</td>
<td>2</td>
<td>5</td>
<td>大阪府研究発表会について</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>26</td>
<td>語学研修について</td>
<td>26</td>
<td>2</td>
<td>19</td>
<td>次年度の事業計画について</td>
</tr>
</tbody>
</table>

(2) SSH運営指導委員会

日 時 平成 20年 12月 15日 (月)
場 所 本校 校長室
参加者 運営指導委員 10名 および 本校教員
 赤池敏宏、川中宣明、河野 明、田畑泰彦、森 詢介、
 恩地忠司、網代典子、脇島 修、宮本憲武、松本 透
内 容
 本年度の大手前高校SSHの取り組み報告
 取り組み内容について指導委員からの指導・助言
 今後の予定 等
<table>
<thead>
<tr>
<th>月</th>
<th>日</th>
<th>対象者</th>
<th>内容</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>教員</td>
<td>SSH 委員会</td>
<td>SSH 指定報告</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>生徒・保護者</td>
<td>生徒・教員への SSH 指定報告</td>
<td>文書等にて説明</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>教員</td>
<td>SSH 研究開発委員会</td>
<td>取り組み確認</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>教員</td>
<td>新規 SSH 校説明会</td>
<td>文部科学省にて</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>教員</td>
<td>SSH 委員会</td>
<td>新規 SSH 校説明会の報告</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>教員</td>
<td>職員会議</td>
<td>SSH 取り組み内容の確認</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>教員</td>
<td>JST より訪問</td>
<td>東尾、笹山、吉田 各氏</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>中学生</td>
<td>SSH 訪問授業</td>
<td>大阪市立花乃井中学校</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>中学生</td>
<td>SSH 訪問授業</td>
<td>大阪市立市岡中学校</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>2 年理数科</td>
<td>集中講座Ⅱ（サマースクール）</td>
<td>プレゼンテーション発表大会</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2 年理数科</td>
<td>SSH 生徒研究発表会</td>
<td>ポスターセッション賞受賞</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>2 年理数科</td>
<td>大阪府教育委員会へ表敬訪問</td>
<td>受賞報告</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>希望者</td>
<td>全国高校生化学グランプリ 2008</td>
<td>大賞・銀賞を受賞</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1 年理数科</td>
<td>天王寺高校 SSH 発表会</td>
<td>生徒交流会に参加</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>希望者</td>
<td>第 1 回数学特別講義</td>
<td>大阪府立大学 林利治先生</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>1 年理数科</td>
<td>集中講座Ⅰ（東京研修）</td>
<td>つくば研究所等見学</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>教員</td>
<td>SSH 訪問授業</td>
<td>大阪市高倉中学校</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1 年理数科</td>
<td>統計入門講座の開始</td>
<td>プレ・サイエンス探究</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>希望者</td>
<td>メコン5カ国国際科学会議</td>
<td>英語によるプレゼンテーション</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>希望者</td>
<td>日本数学コンクール 2008</td>
<td>優秀賞・優良賞・奨励賞を受賞</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>教員</td>
<td>SSH 訪問授業</td>
<td>大阪市立友渕中学校</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>2 年理数科</td>
<td>高校数学特別講義</td>
<td>本校生徒が講演</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>希望者</td>
<td>第 2 回数学特別講義</td>
<td>名古屋大学 河田惠昭先生</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>2 年理数科</td>
<td>サイエンス探究発表会</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>中学生</td>
<td>SSH 訪問授業</td>
<td>八尾市立曙川南中学校</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>2 年理数科</td>
<td>理数科集中セミナー</td>
<td>大阪大学 小野恵史、落合晴栄先生</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>運営指導委員</td>
<td>SSH 運営指導委員会</td>
<td>SSH 科目「まこと」の見学</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>希望者</td>
<td>英語 語学研修</td>
<td>3 日間</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>1 年生</td>
<td>SSH 特別講演</td>
<td>京都大学 河田恵昭先生</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1 年理数科</td>
<td>住吉高校 SSH 発表会</td>
<td>プレゼン発表</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1 年理数科</td>
<td>SSH 科目「まこと」発表会</td>
<td>英語によるプレゼン</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>希望者</td>
<td>日本数学オリンピック本選</td>
<td>成績優秀賞を受賞</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>希望者</td>
<td>大手前高校数学談話会</td>
<td>生徒による校内研修</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>希望者</td>
<td>大阪府生徒研究発表会</td>
<td>プレゼン発表、ポスターセッション</td>
</tr>
</tbody>
</table>

（３）SSH事業経過報告
第２章 プレ・サイエンス探究

1 「大手前数リンピック」の実施

（1）仮説の設定

●研究（実践）のねらい
①自力でじっくりと時間をかけて考える機会を提供する。
②講評の中で取り上げることにより優れたアイディアを出した生徒を顕彰する。
③数学に高い関心を持つ生徒を発見し、様々な働きかけのきっかけとする。

●仮説
A) 第一の仮説
自分の力でじっくりと考えることを好み、数学分野に対する高い潜在能力を持った生徒が存在する。本実践を続ける中で、そのような生徒が常連解答者として明らかになると期待できる。

B) 第二の仮説
第一の仮説のもと、数学分野に対して能力ある生徒への働きかけを行うことにより、学校の枠を超え、数学系コンテストに出場するなど外部に向けて活躍の場を広げる生徒が現れるものと期待できる。

（2）実施概要

●内容・方法
実施時期：通年。長期休業期間を除き、およそ月1回実施。
対象生徒：問題と講評の配布は全員。解答提出は希望生徒。
実施内容：問題配布、解答募集、講評配布のサイクルを繰り返す。

●実践の方法
具体的な実施時期と回数は以下の通りである。

<table>
<thead>
<tr>
<th>回</th>
<th>時期</th>
<th>問題1</th>
<th>問題2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4月</td>
<td>9つの数</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5月</td>
<td>3点を通る平面</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6月</td>
<td>円周上の空港</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9月</td>
<td>円板を覆う</td>
<td>有理数係数方程式</td>
</tr>
<tr>
<td>5</td>
<td>10月</td>
<td>海賊と分け前</td>
<td>三角形の面積</td>
</tr>
<tr>
<td>6</td>
<td>11月</td>
<td>特徴ある数</td>
<td>有理数解</td>
</tr>
<tr>
<td>7</td>
<td>12月</td>
<td>動物集団と確率</td>
<td>交わる線分</td>
</tr>
<tr>
<td>8</td>
<td>1月</td>
<td>仕事の流れ</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1月</td>
<td>格子点の問題</td>
<td>正多角形の対角線</td>
</tr>
</tbody>
</table>

また、手直しした生徒解答および講評をまとめ「数リンピック第1集」（60ページの冊子）を作成した。
仮説において予想したように常連投稿者が現れ、それらの生徒を中心に「日本数学コンクール」「日本数学オリンピック」へ参加した結果、顕著な成果を挙げた。次年度以降は、生徒解答の分析や、他の事業への効果の波及について検証したい。

2「数学レポート」作成指導の実施
(1) 仮説の設定
●研究のねらい
通常の教育課程における単元設定は、数学的対象（「多面体」「素数」「曲面」等々）を調べることに焦点を当てるというよりも、むしろそのために有用な数学的方法（「式と計算」「二次関数」「図形と計量」等々）に焦点を当てるものとなっている。対象と方法は明確に二分されるものではないが、様々な数学的方法を学ぶと同時に、それらの方法を用いて対象を調べる活用場面を豊かなものにすることが、興味・関心の喚起という面からも、また方法習得への動機を与えるという面からも重要である。
本研究は、生徒が自ら設定したテーマについて調べ、考察を加えるという能動的な活動を通じて数学への興味・関心を深め、数学学習への動機を獲得することを第一のねらいとする。また、本校ＳＳＨ研究の課題である理数コミュニケーション力育成の一つとして、レポート作成能力を育てることを第二のねらいとする。なお、本研究は「SS数学Ⅰ」で行う＜早期に全体像を見せるカリキュラム＞実践研究とも連動し、その効果検証の役割も担う。

●研究の仮説
A) 第一の仮説
生徒は、レポート作成の過程を通じて、授業で取り上げるものだけに限定されない数学の広さや、先人の思索の積み重ねにより発展してきた数学の歴史的側面への認識、また数学は現在も発展しつつあり未知の課題がさまざまに存在することを知るなど、数学という領域への認識・理解を深めるであろう。

B) 第二の仮説
生徒は、入学段階では「公表を前提とした文書」の作成にあたって最低限守るべきルールなどについての認識が十分ではなく、安易な引き写しなども多々みられるものと予想される。この点について、レポート作成の経験を積み、指導を受けるなかで、改善が進み、理解を深めていくであろう。

C) 第三の仮説（「SS数学Ⅰ」検証仮説）
「SS数学Ⅰ」における＜早期に全体像を見せるカリキュラム＞の効果の表れとして、生徒は数学レポート作成にあたり、通常の高等学校1年次に学習する数学内容
の範囲に限定されることなく多様な数学的方法をもって問題の解決に当たるであろう。

（2）実施概要

●内容・方法
①対象 理数科1年生2クラス（80名）
②実施時期
第1回 4月下旬～5月上旬（大型連休期間）
第2回 7月～8月（夏期休業期間）
第3回 12月～1月（冬期休業期間）
第4回 3月中旬から4月上旬（春期休業期間　予定）
③各回の指導の重点
第1回 関心の幅を広げる。文書作成のルールを守る。
第2回 調べたことだけではなく、自分の考えたことをレポートに含める。
第3回 第2回のレポートをその後の進展を含めて書き直し、質の向上を図る。
第4回 一年間の数学レポート指導の総仕上げ　2年次サマーセミナーへの接続

●研究の方法
①課題の提示
内容を狭く限定せず、「数学に関係したテーマを選び、自分なりに調べたり、追究したりして、レポートを作成してください」という自由度の高い形で提示する。
手がかりとして、過去の類似の取り組みの際の表題一覧を配布する。
②提出レポートの検討
提出されたレポートを読み、検討する。ここでは、レポート本体の内容と、レポートに付随した生徒の感想の二面に着目して検討を加える。
③講評
第一回は、指導教員が作成した個人講評、および全体講評を配布した。第二回以降は、全体講評のみを配布した。なお、個人講評の実例を末尾資料に示す。
④生徒間の相互閲覧
第二回以降、教員による個人講評に代えて、生徒による相互閲覧を取り入れた。
また、第二回レポートの優秀作品を展示パネルに添付し、コモンスペースに展示して全校生が閲覧できるようにした。
研究仮説の検証は「③提出レポートの検討」により行う。本体内容からは第三の仮説を、また、生徒の感想からは第一、第二の仮説を検証する。

（3）検証
①第一の仮説
生徒の感想（4. 資料（2）参照）には、「もっと広い世界があることを知って驚いた」「数学の世界にはまだまだなぞがたくさん残っているということがわかりました」「数学として研究されていることにも興味がわいた」等、仮説を支持する記述が数多く見られた。
②第二の仮説

第一回レポートの中には、ウェブ上で見つけてきた記事や参考書籍の中の文章をそのまま写したものも見られた。個人講評（4.資料（1）参照）の中でその点を個別に指摘し、また全体講評を通して「公表を前提とした文書」の守るべき事項について触れる中で、回を追うごとにそのようなレポートは明らかに減少した。生徒自身の感想の中にも、この点の改善に触れたものが複数みられた。

③第三の仮説

生徒がレポートで用いた数学的手法の中には、通常高等学校1年生が学習する内容を超えたものが数多く見られた（4.資料（3）参照）。「SS数学 I」で学習していない手法も含めて積極的に取り込みつつレポート作成にあたっている生徒も存在するため、すべてを「SS数学 I」の結果とするとは妥当ではないが、「SS数学 I」の早期に全体像を見せるカリキュラムがある程度の影響を与えていることが示唆される。

④今後の課題

第4回レポート作成は、3月中旬から4月にかけて実施し、来年度夏のサマースクールへと繋げつつ指導する予定である。成果の公表まで含めた指導と、数学学習の基幹部分を含む「SS数学」へのフィードバックの促進が次の課題である。今回は感想・観察による検証となったが、数値データも交え客観性を持たせた分析を今後していくつもりである。

（4）資料

●個人講評の例

例1 独自性と一般性のバランス

例2 歴史をテーマとするときの注意

例3 文章作成上の守るべき基本

例3 無理のあるテーマ設定への指摘
生徒の感想より

・「一次不定方程式とユークリッドの互除法」
一次不定方程式など、適当に数字を当てはめていると、簡単に解が見つけるられるだろうと思っていたら、論理的に求めるのも簡単だと思っていた。しかし、調べていくうちに、知らない用語や式がたくさん出てきて理解に困った。筋道を立てて答えを求めているのは容易ではないことを痛感した。また数学には様々な定理や法則が密接にかかわっていて一つも疎かにできないと感じた。

・「身近な確率について」
身近にある確率を実際に考え、まとめたことによって、今までわからなかったものがわかるようになった。例えば、Lotto6の5等が当たる確率は40回に1回ぐらいであって、私が思っていたより当たりやすい結果となった。またこのような機会があればさらに様々な確率について調べて行きたいと思う。

・「素数について」
今まで単に「1と自分自身でしか割れない数」と考えていた素数には、もっと広い世界があることを知って驚いた。また、簡単に素数を見つけられない方法もわかって良かった。
前回のレポートは本当に丸写しだったが、今回は少し自分で考えたり、計算することができてよかった。でも、まだ書いてあることを自分で計算したり、やってみたりして確認しただけなので、次回は自分で問題を作ったり、新しい方法を考えたりするところまで頑張りたい。

・「ハノイの塔とその考案者リュカについて」
今回、リュカの行った研究などについていろいろと調べ、数学は本当に奥の深い学問なんだなぁと改めて思いました。（中略）ハノイの塔の円板の動かし方を考えしていて、ただ動かす順番を考えているだけではだめで、こうなるためにはその直前にこうなっていないとダメで、と、後ろから順番に考えていくのも大切な考え方なんだとわかりました。（中略）また今まで数というのは、ものの個数であったり、座標であったり、何かを示すための記号として扱っていたけど、完全数などのように数自身の性質として扱われることもあるんだと知りました。今まで何百年もかかっているような人が完全数を揃えてきたと考えて数に対する愛着はすごいなあと思いました。そして、数学の世界にはまだまだぞがたくさん残っているということがわかりました。最初は身近な数学について調べていたけれど、結局は数列なども出てきて学ぶことができ、やはり数学について調べたりするときは数列は避けられないものであり、それだけ便利なものなんだなぁと思いました。数学に対する考え方も、数学を解く時の考え方も、自分にとって新しい何かを学べたように思いました。
・「確率について」
授業で学んだ確率は、問題を解くことがほとんどで、何か苦しいものがあった。しかし、今回は自分で確率というテーマを選び、調べて書き上げていったので、「やらされている」というような感覚がなく、どんどん進んで書くことができた。改めて、自分から勉強することの大切さを知ることができた。数学レポート書く機会はあと2回あるが、どの回も自分にとってプラスとなるようなものを作り上げて、読者の方にも理解してもらえるレポートを書き上げていきたい。

・「素数」
因数分解するときにある数字が素数かどうか迷うことがある。そんなときに、素数とはなんだろう、と思いこのレポートにすることにした。数は無限に続いているが、素数は無限にあるだろうか？という問いに、僕は直感的に無限にあると思った。しかし、証明はできなかった。コンピュータなどとても遠い昔に証明がされていたことに驚いた。また、素数に限らず、数学として研究されていることにも興味がわいた。最後に挙げたように未解決の問題が存在するが、自分自身で解けるよう、知識を増やして行きたいと思った。

●生徒の選んだレポートテーマ例
①数と式、数列などに関するもの
素数 フィボナッチ数列 黄金比 有理数と無理数 虚数 円周率 完全数 ヘロンの公式 ルート2 ルート3 ルート5 ルート7
メルセンヌ素数 集合の問題 0.999...=1 について 実数 エラトステネスの篩
魔方陣 誕生日は何曜日 連分数 位取り記数法について 四つの異なる数字
図形を用いた展開公式の証明 自然数と正の偶数はどっちが多い 友愛数
「アキレスと亀」について ラクダの分配
②図形に関するもの
正五角形 ピタゴラスの定理 チェバとメネラウス ルーローの三角形
九点円 一筆書き 四次元の図形 フォイエルバッハの定理 空間図形 椎円
相似 正多面体 準正多面体 ナボレオン点 球の表面積と体積 三角比
円の伸開線と自重 デカルトの円定理 三角形の角定理 ユークリッド幾何学
平面図形の回転 対数螺旋 オイラーの多面体定理 パラ曲線 箱 対数の法則
トレミーの定理
③数え上げ・確率・統計に関するもの
東洋のネルソンと数学 身近な確率 ヒストグラムについて
席替えの完全順列 利息が利息を呼ぶ ポーカーの確率 ランチェスターの法則
反復試行の利用 バークードシンボルについて ベイズ統計学
人間の直感とコイン投げ 偏差値70をとる点数 統計から予測へ
④数学の歴史、その他の話題に関するもの
数字の歴史 πの歴史 和算 ビラミッド 関孝和 オイラー ガウス
パスカル リュカ

写真：レポートの一部
写真：優秀レポートの掲示

3 科学オリンピック・コンクールへの参加

(1) 仮説の設定
科学への意欲と能力を有する生徒に対し、校外へ活躍の場を広げ、同世代の若者との切磋琢磨をする機会を支援することは、さらなる能力の伸長のきっかけとなり優秀な人材の育成につながる。これらコンクールへの参加支援は、それだけで単独の効果を狙うものではなく、「大手前数リンピック」「課題研究」など校内における取り組みとも関連しており、校内の取り組みの成果検証の手段の一つとなるであろう。

(2) 内容
A) 「日本数学コンクール」への参加
実施日：平成20年8月10日（日）
参加者：希望生徒10名が参加
B) 「化学グランプリ」への参加
実施日：平成20年8月23日（土）
参加者：希望生徒6名
C) 「日本数学オリンピック」への参加
実施日：平成20年1月12日（月）
参加者：希望生徒3名が参加

(3) 検証
● 成果
A) 「日本数学コンクール」
本校からの受賞者数は、優秀賞1名、優良賞1名、奨励賞2名であった。
（参加者は116名であり、全受賞者数は大賞1名、優秀賞2名、優良賞5名、奨励賞15名であった）
B)「化学グランプリ」
本校の受賞者は、大賞が1名、銀賞が1名であった。
（応募者2105名であり、大賞1〜7位、銀賞22〜40位であった）

C)「日本数学オリンピック」
第19回日本数学オリンピック本選（2月11日実施）において、本校生2年生1名（澤田晃一郎くん）が成績優秀者として表彰を受けた。今後、優秀者21名の中から日本代表選手の選考が行われることになっており、日本代表選手に選ばれた場合はIMOドイツ大会に参加することになっている。
●検証

本年度は3つの科学オリンピック・コンクールにおいて優秀な成績が得られたことは大変名誉なことであり、素晴らしい結果であった。入賞者数、参加者数のどれをとっても過去最高の出来であった。本校から日本を代表する生徒が輩出できたことは今後のSSH事業への大きな弾みとなるであろう。

SSHになったことにより、生徒の各オリンピック・コンクールへの参加に対する援助ができたことが大きな理由の一つであった。入賞を果たした生徒の感想からも今回の結果に対し、かなり満足し、強く自信を持つことができたようである。「大手前数リンピック」「プレ・サイエンス探究」の取り組みの成果としては初年度から十分な成果が得られたが、今後は更に研究を重ね、SSHにおける論理的思考力・論理的説明力の取り組みに力を注ぎ、システム化をしていきたい。
４ 「高等学校・大阪市立大学連携数学協議会」における発表

（1）仮説の設定

課題研究や数学レポート作成を通じて得た知見を生徒自身が外へ向け発表することにより、プレゼンテーションの実地を体験し、自信を獲得するとともに、参加者との意見交換を通じてさらなる研究の進展に資することをねらいとする。

（2）実施概要

研究会名：高等学校・大阪市立大学連携数学協議会第3回ワークショップ
日　時：平成20年11月8日（土）午後2時～2時15分
発表者：塩見準（本校2年生）
発表形態：講演（15分）
講演題目：四次元立方体の視覚化

●講演内容

四次元立方体は「三次元空間に射影し、その像を平面に射影する」という2段階の操作を踏むことにより、スクリーン上の像として表現できる。その過程を分析し、直交射影を用いる方法と一点からの透視（塩見君の言葉では実写）を用いる方法との二つの方法について考えた。また、これらの理論的考察に基づいてプログラムを作成し、コンピュータにより射影図を視覚化し、特定の軸の周りに回転させてその様子を観察した。最後に、立体視のための射影図対の作成を試みた。

写真1
写真2
写真3
（3）検証
①参加者一同より，講演の内容，講演の方法について高校生の取り組みとして高い評価を得た。内容について講演後も活発な意見交換が行われるなど，有意義なものとなった。
②この発表内容は，8月に実施された「SSH生徒研究発表会」ポスターセッションの部に参加したものを発展させたものである。数回にわたる発表を繰り返す中で，物怖じせず堂々と発表する態度，15分の中に要点を明確にして内容をまとめる力など，理数プレゼンテーション力の明白な向上が見られた。

以上の観察結果は，「課題研究や数学レポート作成の発表の場」「実地経験を積むことによる自信の獲得」の両面においてねらいが達成されたことを示唆している。
今後も機会があれば積極的に参加できるよう取り組みたい。

5 特別講義・講演の実施
（1）仮説の設定
●研究のねらい
数学・数理科学分野の研究者による生徒への特別講義を，数学分野での他のSSH研究課題と関連付けながら実施する。その相互作用の中で生徒の視野を広げ，動機付けを強化することにより，全体として数学学習への弾みをつけることをねらいとする。
また，身の回りの最先端の科学についての講演を受けることにより科学に対しての興味を起す。
①「統計入門講座」との関連において特別講義を実施する
プレ・サイエンス探求「統計入門講座」の導入をかねて，講座内容についてご指導いただいている林利治先生（大阪府立大学）に入門講義をお願いした。これにより，生徒が統計とはどういうものかについて概括的なイメージを持つとともに，統計が社会で使われている場面を知ることにより，学習の基盤を得ることをねらいとした。
②「数学レポート作成」との関連において特別講義を実施する
第一線で活躍中の研究者で，「日本数学コンクール」を通じて高校生・中学生への働きかけを継続してなされている大沢健夫先生（名古屋大学）に直接語りかけていただくことにより，研究者の日常の一端に触れ，さまざまな数学的テーマに出会うきっかけとなることを目的とした。「数学レポート作成」のテーマ設定の考察とするなど，他の取り組みとの相乗効果をねらいとする。
③「高校生国際科学会議」のテーマである環境問題に関する講演を実施する
巨大災害の第一人者である京都大学防災研究所巨大災害研究センター長の河田惠昭教授に，グローバルな立場で日本・世界に起こっている災害についてご講演を頂くことにより「高校生国際議会」へ向けての意識を高めることを目的にした。
研究の仮説
①「統計入門講座」開始前に特別講義を実施することにより、生徒の統計に対する必要性の理解が高まるとともに、社会の中のどのような場面で統計が用いられているのかという点についての理解が促進され、学習の動機付けとなるであろう。
②様々な話題を多岐に亘って含む講義を受けることにより、生徒はそれぞれの関心のありかによって強い興味を感じる部分に反応し、今後の数学レポート作成におけるテーマ選択などの幅を広げるであろう。
③環境問題に関係する内容の講演を受けることによって、知識を増やし、いろいろな角度から考察することを知ることにより、課題研究の内容をより深く探究できるようになる。また、国際的に貢献しようとする使命感を育てるのであろう。

実施概要
研究の内容
①第1回
実施日時 平成20年9月13日（土）11:00～12:30
実施場所 本校視聴覚教室
講師 林利治先生（大阪府立大学大学院理学系研究科准教授）
講義題目 身近な統計・役に立つトウケイ—始まりは平均値から
対象生徒 理数科1年生80名および1,2年生（理数科・普通科）希望者約20名
内容 平均値、標準偏差などについての導入的講義に続き、確率についての意外性のある話題の紹介、さらに、社会の中で統計が使われている場面の紹介など幅広く統計への関心を喚起する内容であった。

②第2回
実施日時 平成20年11月15日（土）11:00～12:30
実施場所 本校視聴覚教室
講師 大沢健夫先生（名古屋大学大学院数学数理科学研究科教授）
講義題目 社会の中の科学と科学の中の数学
対象生徒 理数科1年生80名＋普通科希望者約10名
内容 世界各地で行われる研究集会に参加された際の様子など、研究者としての活動の紹介。日本数学コンクールについて、なにを目指し、どのような方針で問題作成にあたっているかなどの紹介。さらに、コンクール問題および現在ご執筆中の著書の内容に題材をとしながら、曲面を裏返す話、オイラー数について、連分数とかよみ、など多岐にわたった。

③第3回
実施場所 本校視聴覚教室
講師 河田憲昭先生（京都大学防災研究所巨大被害研究センター長　教授）
講義題目 「身近な防災・減災の知恵」
対象生徒 理数科1年生80名＋普通科希望者約10名
内容 大阪の地理的状況などを踏まえ、地震・津波・高潮・台風・温暖化などについての説明と被害にあわないための知恵について世界各地での具体的な状況を踏まえての説明があった。非常に分かりやすく関心をもって聞くことができた。

（３）検証
①第１回特別講義の感想例を以下に挙げる。これらの感想は、「必要性の理解」「活用場面の認識」「学習の動機付け」という第一の仮説を支持するものと受け取れる。

・統計というものが初めはどういうものか分からなかったけれど、今日の講義を聴いていたらいとういうものかわかった。ぼくらが何気なく使っている物や見ているグラフなどが、このような複雑な統計により成り立っていることを知ってすごく感動しました。今度の数学レポートでやってみようと思います。
・平均からやさしく説明してくださったおかげで簡単に統計に興味を持つことができました。トランプの話は面白かったです。
・最後のトランプの確率の話はすごく難しくてあまり理解ことができなかったけれど、すごく不思議でもっと知りたいと思いました。
・身の回りのいろいろなところに統計が使われていたこと。統計が使われているとは思えないような意外なものにも統計が使われていたことは驚いた。
・世界のいろいろなものが統計に繋がっているとわかって楽しかった。
・授業では実用的にどう使われているかまで取り上げられないので、ここでどう統計が活用されているかを聞いて、統計の学習に入りやすくなったと思う。
・統計のことがとてもよく分かって面白いい授業だった。貴重な体験ができた。
・とても分かりやすい講義だった。これから「統計」はもっと必要になってくると思うので、時間があれば勉強したい。
・統計が多くの場所で活用できることを知れてよかったです。
第2回特別講義の感想例を以下に挙げる。これらの感想からは、講義中に現れた数学的問題の様々な部分に反応した生徒が、探究心を深めていく様子が伺える。単に講義を聴いただけで終わるのではなく、さらに知りたいなど今後に繋がる記述が数多く見られるという点において、第二の仮説を支持するものであると考える。

・先生の話を聞いて、私たちが今学校で習っている数学は、数学の世界の中ではほんの一部のことが分かった。数学の世界はとても広くて、未知な部分がたくさんあり、これから未知な部分が解明されていくのだろうと思った。
・エジプトのカレンダーの作り方に興味を持った。絵を見るとたくさんの人が様々な仕事をしていた。長い年月データから、うるう年を決めるのに連分数というものを使っていてらしい。そのように連分数を使うと、なぜ、うるう年が決められるのか、誰が考えたのか知りたいと思った。
・家に帰ってからプリントをよく読んでみようと思う。とにかく、ポアンカレ－ホッブの定理を理解したい。
・多面体の性質について分かったのがよかった。正多面体が5つしかないのはこれが関係しているのかなあと思った。
・数学というのはただ問題を解くだけの学問ではないのだと改めて認識した。
・数学はもうどこまでも広げられるんだと思いました。
・私たちが今学校でやっている数学は、答えはただ一つで、解き方も限られているけれども、もっと発展させていて世の中のことを数学的な視点でみてみたら、問いや自分で考えて答えも自分で作り出すというものなんだということがわかった。数学の世界って本当に広くて、深いものだなあと改めて思った。
・数学者はいろいろ旅をするんだなと思った。
・疑問を持つことが数学において大切であることを改めて学んだ。
・数学関係の人の仕事内容、行動の話が面白かった。学校（数学）で教えたりしつつ論文を書き、発表する。学者の仕事についてもう少し詳しく知りたい。
第3回特別講義の感想例を以下に挙げる。これらの感想から、このような機会を持つことの重要性と発展性が感じられる。モチベーションから自覚への推移を感じる。

・今までこういった形で防災のお話をきくことがなかったので面白かった。科学的にこのような話を聞いたことがなかったからである。まさに理系のための講演という感じだった。科学的な話は知識が追いつけず難しく感じることが多いが、自分の生活と直結しているので理解しやすかった。いろいろな話が聞いて楽しい。これからも多くの話を聞き、学んでいきたい。

・岩波ジュニア文庫で先生の本を読んでいたのでよく理解できました。質問はその本を読んでいたときに感じたものです。SSHで良かったと思います。

・講師の方が大手前OBであることを聞いて大手前生であることに誇りを感じ、自分も世界の世の中のためににかしなければいけないという使命感を感じた。

今回は感想・観察による検証となりやや不十分なものとなった。今後は数値データも交え客観性を持たせる分析をしていくつもりである。

6 大手前高校数学談話会

（1）仮説の設定

生徒が自ら企画し、SSHで取り組んだ優秀な作品内容を校内の生徒の前で発表したり紹介することは、SSH事業の全体への還元につながり、生徒の今後の研究や取り組みの動機付けにつながるであろう。

（2）内容

優秀レポート・優秀作品の発表紹介、オリンピック問題の解説などSSH事業に関して生徒たちが取り組んできた優秀な取り組み内容を、生徒自身によって企画運営する談話会。

日程 平成21年3月6日（金）10:00～11:30

題目 1. 四次元を見る（2年生 塩見 準）
2. 席替えの完全順列（1年生 武智大喜、由比直樹、吉田将也）
3. 正五角形の不思議（1年生 幸寺健悟、長宮大輝、小西保彰）
4. 日本数学オリンピック本選問題解説（2年生 澤田晃一郎）
（3）検証
多くの生徒が積極的に参加しており、熱心に聞き入っていた。また質問のやりとりなど生徒の主体性が表れ、生徒同士の和やかな雰囲気の中で進んだ。また２年生の生徒の発表を１年生が熱心に聞いている様子には学年間を超えたＳＳＨならではのつながりがあった。時間の関係でアンケート等の評価ができなかったが、今後ともこのような機会は設けていきたいと考えている。また、その効果も他への波及効果をみながら分析をしていきたいと考えている。
第3章 宿泊研修

1 集中講座Ⅰ（東京研修）

（1）仮説の設定
SS科目『信念（まこと）』、プレ・サイエンス探究の内容を充実、発展させる。1学年の早い段階で、科学の第一線で活躍されている教授・研究者の講義を受けたり、大学・研究所を見学することは、科学への興味・関心を高め、今後の科学の学習に向かう態度を形成する。「科学するこころ」の芽生えとなる。

（2）実施概要
実施日時 平成20年10月7日（火）～9日（木）（1泊3日）
実施場所 東京工業大学、東京大学、つくば研究所、科学未来館等
対象 理数科1年生全員80名

内容
A） 東京大学駒場キャンパス見学と講義
 ●講師 河野俊丈教授（東京大学数理科学研究科）
 「多面体の数学から非ユークリッド幾何学へ」
B） 学習に対する心構え
 ●講師 河合塾本郷校校舎長 山岸敬和氏
 「東大（難関大）に望む－学習法・心構え－」
C） 本校OB東大生による相談会
 ●川上雄也（4年）、西山航平（2年）、谷川昌志（2年）、藤田大樹（1年）
 栗原理沙（1年）、門桃子（1年）
D） 筑波宇宙センターの見学・講義
 ●講義 中原潤二郎氏（筑波宇宙センター所長）
 「宇宙ってどんなところ？」
 ●激励のお言葉
 吉川一雄氏（(株)エイ・イイ・エス代表取締役）
E） サイエンス・スクエアつくば、地質標本館見学
 ●サイエンス・スクエアつくば
 独立行政法人産業技術総合研究所が行っている最先端の研究成果や社会への貢献などについて紹介があった。
 ●地質標本館
 日本で唯一の地学専門の総合博物館であり、地質標本だけでなく地学全般と地球の歴史・メカニズム、人間との関わりについて分かりやすく展示が行われていた。
F) 日本科学未来館
「地球環境とフロンティア」「生命の科学と人間」「技術革新と未来」「情報科学技術と社会」などをテーマとした展示を初め数々の科学展示が行われていた。

G) 東京工業大学すずかけ台キャンパス見学と講義
●講師 広瀬茂久 教授（生命理工学部長／大学院生命理工学研究科長）
「心臓は収縮装置の向きをどうそろえているか」
●講師 赤池敏宏 教授（大学院生命理工学研究科教授）
「再生医療・人工臓器・ドラッグデリバリーシステムとは」
●講師 彌田智一 教授（物質科学創造専攻長、資源化学研究所 教授）
「鋳型（テンプレート）で創る先端材料」
●シーラカンス模型展示見学 岡田研

（3）検証
●生徒の感想より
・最初プログラムを聞かされたときは難しそうに思いましたが、自分の理解できるようにお話頂き、大変よく分かりました。話を聞きながらいろいろ考えているとだんだん楽しくなってきて、興味のあることに至っては夢中に思考を巡らせていました。
・日本科学未来館はでは夏休みの課題で調べていた超伝導についての見学が出来、とてもうれしく思いました。
・今回の研修で興味が一気に増えた気がします。筑波宇宙センター、東大での講義など普通では体験できないことを経験して嬉しかったです。これからは前向きな姿勢で勉強していきたいです。

●検証
今回の研修については、大変充実したという結果が得られた。生徒のモチベーショングも大変高まり、その後の取り組みやコンクールへの参加など従来にはない参加があった。次年度はさらに充実させ具体的な検証を実施したいと考えている。

| 内 容 | そう思う | 普通 | そう思わな
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>東京研修は有意義でしたか</td>
<td>74</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>特別講演は有意義でしたか</td>
<td>65</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

（根拠2 生徒用）
２ 集中講座Ⅱ（サマースクール）

（1）仮説の設定
SS 科目『SS 数学Ⅰ』、『信念（まこと）』、『理想（のぞみ）』、更には、課外時間を利用して1年半の期間を使い、数学への興味づけから発表に至るまでの段階的なプロセスを踏んできた今、理科・数学のある程度の学習が進んだ段階で、興味・関心に応じて理数に関する内容についてまとめ発表することは、総合的に科学する力を大きく伸ばすことにつながる。

（2）実施概要

実施日時 平成20年7月23日（水）～25日（金）（2泊3日）
実施場所 京都大学 RIセンター、関西セミナーハウス
対象 理数科2年生全員82名および普通科の希望者
内容 A) 京都大学の再生医科学研究・医学部・工学部等教授による最先端技術等の講義

●講師 五十棲泰人名誉教授（前RIセンター長）
研究内容の講義と心構えについて。

●講師 田畑泰彦教授（再生医科学研究所）
ドラッグデリバリーシステムや人工臓器等についての話等を含め、再生医科学の分野での最先端の内容と、科学の分野を目指す者への心構えについての講義。

●講師 植田充美教授（農学研究科応用生命科学専攻）
遺伝子解析の現状と、サフィニアにみる企業戦略についての講義。

B) 京都大学 研究所・研究室見学

●再生医科学研究所（田畑泰彦 教授）
●医学研究科 画像診断学・核医学（富樫かおり 教授）
●薬学研究科 医療薬化学専攻（高倉喜信 教授）
●工学研究科 マイクロエンジニアリング専攻（小寺秀俊 教授）

C) 本校 OB 大学生・院生による講義と相談会

●久野雅智（医）、狭川浩規（医）、三宅朋代（薬）、大槻さつき（薬）、
宮内まゆこ（農）、鈴木彩（農）、市川幸平（理）、丸田一郎（工）、
玉手修平（工）、山添弘晃（工）、五十部隆（法）、東功司（教）

D) 英語による講義「ドイツ人からみた日本」

●講師 Klaus Spennemann（前同志社大文学部教授）
外国人から日本人はどのようにみられているか、日本人の特性を分析し、これからの理系分野を支えていく若者にのぞまれることについての講義。
E）講義「地球環境と調和できるエネルギー技術と日本の国際貢献」
●講師 渥美寿雄教授（近畿大学理工学部）
環境問題の核心と日本ができるエネルギー問題への取り組みについての講義。

F）数学プレゼンテーション
各班ごとに数学のテーマについて調べ研究した事柄についてプレゼンテーションを行う。
テーマ：素数、コッホ曲線、マルコフ過程、4次元空間等

（3）検証
●生徒の感想文より
・再生医学の分野の進歩には驚きの連続だった。中でも、分解吸収できる各種材料を応用して作った骨・コラーゲンのスポンジ・チューブなどの開発はとてもすごいと思った。治療と診断を同時にできるものが開発されれば世界中の医療技術はもとより発達するだろう。
・京都大学での講義と研究室、博物館の見学をはじめ、夜は宿舎で卒業生の大学院生・大学生から研究生活の報告を聞いたり、数学のプレゼンテーションや様々な講義を受けたりで盛りだくさんでした。最終日には炎天下、武田薬品の植物園を見学しました。その3日間で人生観が変わった人がいるくらい、刺激的で知的な楽しい3日間でした。
・京大見学会では再生医療で有名な田畑先生に講義をしてもらえてすごく感激した。
1年の時にも講義してもらったけど、先生とかなり距離が離れていて、人工血管とかを間近に見ることができなくて残念だった。でも今回の研究室訪問で少人数で人工血管とかも詳しくお話を聞くことができた。
・植田先生のお話は、農学系（というかバイオ系）を現在めざしている私にとってはとても興味のあるものでした。遺伝子のどっている高価なプレパラートを見せるくらいだったらけど、今度は自分で研究して、顕微鏡でちゃんと見てみたいのです。動物でも植物でもおもしろいなと思いました。先生はお二人とも、一つの学問だけでなく、広く学ぶことで今のような研究ができるとおっしゃっていました。その事がすごく心に残りました。私も将来研究したいと思っているので、先生方のように広く学ぼうと思います。
・私はシュペネマン先生の講義が一番心に残っています。最初から半分くらいまで英
語で話されて、聞いているととても簡単な英語で話して下さって、ちゃんと理解できました。ドイツの歴史背景から心理的な話になり、具体的で理解できました。と、本当に分かりやすかったです。英語を学ぶ機会を食べても、とてもためになりました。

・校長先生のご講義は初めてでしたが、身近な地域のお話で、楽しく聞くことができました。歴史の話だけだって、地理もちょっとここできてて、京大の講義のときの「広く学ぶ」はやっぱり大切なんだなと思いました。

・レポート書き始めの頃は、「素数」ってどうしても範囲が広くて、なかなかテーマが決まりませんでした。4人分のレポートをまとめて、何をするか決めて、プレゼンを作る前にはかっこよい時間がかかったように思います。それで、パワーポイントとか原稿を作るのがギリギリになってしまう。本番で少しあらっかりしたりしたけれど、 Fir とスムーズにできて、決勝にもいくことができました。入賞は逃したけど、私的にとても満足のいくプレゼンになりました。

・京大はずっと前から一度行ってみたいと思っていたので、見学できてよかったと思う。見るもの全てが新鮮に映り、僕は学習意欲を高められ、京大に学びたい気持ちがよりもっと高まった。この見学のおかげで、これからは自らすすんで勉強ができそうだと思う。

・この3日間、様々な先生方の講義を聞かせていただき、とてもいい刺激になった。聞く講義数つにつつが興味深いものばかりで、そこで得たものは計り知れない。知識や努力、そして色々な人たちの考え方。それらに触れられて本当によかったと思う。サマースクールでの出来事の中で、特に学びの分野に多大なる影響をもたらすだろう。勉強から得たものも勿論大きいが、このサマースクールという行事において、寝ても計り知れない。様々な新しい興味、楽しみ、そして苦しみを分から合いを友人との絆をさらに深めました。また、自分の少し苦手な数科であった数学についてのプレゼンテーションを行ったことで、数学への興味も少し高まり、数学を勉強しようという気持ちも少し高まった。プレゼン資料を作成するにあたっての調査のおかげで、数学に関する知識も増えたので、この行事があって本当に良かったと思う。

仮説の検証

生徒の感想および、プレゼンテーションへの取り組みとその内容を見ていると、生徒の科学への関心が高まりそれが結果に結びついたということが言えるであろう。また、この発表を受けて参加した「SSH生徒研究発表会」での入賞という結果を踏まえると、2年生のこの時期に集中的に取り組む理科・数学への行事が大変有意義であり必要であるのか分かった。

今回は、主に感想・観察法による分析でやや不十分なものとなった。今後は各プログラムに対するの数値評価も含め、客観性のある検証を実施する予定である。

-34-
第4章 学校設定科目

1 信念（まこと）

（1）仮説の設定

国語科・英語科・情報科の教員により、科学者として必要なスキルである論文作成能力、プレゼンテーション能力を養成することを目指す。前半では課題の設定方法、情報の収集方法、発表の工夫について学習し相互批評を取り入れた学習を行う。また後半では、英語による論文作成、プレゼンテーションの演習を行い、ネイティブによる発音チェックも含め、総合的な英語能力の強化を図る。このような取り組みは、今後のプレゼン発表の基礎力となり「高校生国際科学会議」につながる力になるであろう。

（2）実施概要

●内容
「まこと」は1年後期の授業であるが、次の3つの時期に区分して実施した。
A) 前期: 前期の準備期間として、紙上プレゼンテーションを実施
B) 後期前半: 国語科が中心となり、プレゼンテーション作品の作成
C) 後期後半: 英語科が中心となり、英語によるプレゼンテーションの実施

A) 前期期末考査まで
学校設定科目「まこと」の後期中間までの期間中（10月14日～12月1日）には授業が7単位時間（65分×7回）しかなかったので、効果を高めるために、前期後半の7月段階から指導を始めた。
①パワーポイントの利用法
例年、1年の夏休みには国語総合の課題として、「古典の舞台をたずねてみよう」題して京都のフィールドワークを課しているが、その課題の説明用に作成したスライドを見せるなど、パワーポイントの利用法を理解させた。
②紙上でのプレゼンテーション作品の作成
限られたスライド数でテーマに沿ってプレゼンテーションを構成する練習として、各自で題目を自由に設定させ、8スライドで構成するプレゼン作品を紙上で作成させた。最初の動機付けのため、身近な話題で級友に紹介したいものを選ばせた。この段階では紙上の作品であったが、10月にはパワーポイントを使った作品に仕上げることを予告し、夏休み中に写真等の資料を収集しておくことを指示した。
（題目例）Hard Tennis／夏バテ／沖縄の魅力／古代エジプト／石油について
不思議の国のアリス／宮部みゆき／ユーフォニウム／着物の奥深さ／インスタントラーメンの歴史／携帯のラバー／ビートルズ／ナマズ
脳と神経の作りとはたらき／クサガメ／野口英世／野球の歴史／太宰治
蟹のうまみ～素晴らしいアミノ酸／宇宙の神秘／エコカー
100m の世界記録とスパイクの変化／メガロドン／月のでき方／城東区の歴史
八幡神／星座／上辺じゃ語れない～東大阪／少林寺拳法／タミフル／淀川
③科学記事への興味の喚起
科学に関するトピックへの関心を高めるため、1年後半から国語科で利用している「新聞探検カード」を利用して、新間や科学雑誌から興味を持った記事を2本切り抜き、それに対する意見・感想を付して提出させ、教室に置いてクラス全員が目を通せるようにした。

（タイトル例）

B) 後期中間考査まで
後期が始まってから中間考査までの授業は次のような内容で実施した。
①各クラス40名を5人×8班に編制し、事前に紙上で制作したプレゼンテーションをパワーポイントで作品化し、班の内部で発表、相互批評する。
②クラス全体で、各班の代表8名によるプレゼンテーションを実施し相互批評する。
③科学・環境・エネルギーに関連したテーマを班ごとに決定し、プレゼンテーション作品を作成する。
④クラスの中で作品を発表し、相互批評する。
⑤2クラス合同で、各クラス3班の代表によるプレゼンテーションを行い、相互批評する。
C）後期中間考査以降

「高校生国際科学会議」での英語によるプレゼンテーションの準備段階として、後期後半に作成した環境問題を中心とした科学的内容の発表を英語で実施、英語による原稿の書き方とプレゼンテーションの練習を行う。今後、国際科学会議で発表する生徒にとって有意義な経験となる。各授業では次のような内容で実施した。

①第1回授業 12月17日（水）LAN教室
• 国語科で作成した原稿を、英語発表用原稿のスタイルに置き換える。
• 導入(1名)・本論(3名)・結論(1名)の5つのパートから成る日本語の原稿を作成する。

一人の発表時間は1分程度とし、1グループ7分以内に発表を終えるものとする。
一人が発表する英文の量的な目安は、A4用紙Word10.5ポイント1行40文字(日本語で)の設定で10行程度である。日本語の場合、それより少し少ない8〜9行程度。

• どのパートを誰が分担するかを決め、日本語原稿を基に各自が英語原稿を冬休み中に作成する。日本語原稿・英語原稿共にA4用紙Word10.5ポイント1行40文字(日本語で)×38行横書きの設定で余白は上30mm、下25mm、左右30mmとする。日本語・英語原稿共に1行目にタイトル3行目に発表者名(左から右に発表順に氏名を表記、班長には氏名の左横に*を入れる)を入れ、5行目から本文をタイプ打ちすること。発表者が変わるところでは、必ず段落を変えたこと(Indentをつける)。

②第2回授業 1月9日(金) LAN教室
• 各自が作成してきた英文原稿を合体して、推敲する。日本語原稿を添えて英文原稿を提出。英語のチェックを受ける。

• パワーポイントの写真・グラフに英語のキーワードを入れる。フォントは24ポイント以上でゴシック文字が見やすい。

③第3回授業 1月21日(水) 地学教室
チェック済の原稿を受け取り、読み方の練習をする。発表時は聴衆へのアイコンタクトを確実にすると、各自が自分の原稿を暗唱するまで何度も反復して読み返す。

④第4回授業 1月27日(火) 視聴覚教室
パワーポイントを用いて、グループ全体の通し読みを行う。模擬発表練習。

⑤第5回授業 2月4日(木) 視聴覚教室
発表本番。8グループが順に発表し、発表態度・英語力を探点・評価する。この結果はSSH、OCの成績に入る。7組・8組の上位2グループが「まこと研究発表」で再発表する。

⑥第6回授業 2月10日(火)5限「まこと研究発表」 視聴覚教室
7組・8組から選ばれた各2グループ計4グループが発表。助言者、関西学院大学理工学部教授 尾鼻靖子氏（言語学博士）。
（生徒達の発表内容）

（3）検証
●アンケート結果の比較
プレゼンテーションについて、第1回目の授業で調査したSSH「まこと」事前アンケートと第6回目の授業「まこと発表会」終了時の事後アンケートの結果を以下に示す。表の上段の数字が事前のデータで下段が事後のデータである。質問の5.は事後のみ調査した。回答はAが「非常に当てはまる」、Dが「全く当てはまらない」とした4件法。被験者は80名で、数字は小数点第2位を四捨五入。
「下の表の上段：これまでの英語によるプレゼンテーションについてたずねます。
下段：SSH信念（まこと）のプレゼンテーションについてたずねます。」

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 自然な英語で流暢に話せたと思いますか。</td>
<td>0.0</td>
<td>17.5</td>
<td>48.8</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>43.6</td>
<td>41.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Q2 聴衆の方をみて英語で話せたと思いますか。</td>
<td>3.8</td>
<td>25</td>
<td>43.8</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td>29.5</td>
<td>38.5</td>
<td>26.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Q3 身振り、手振りを交えて英語で話せたと思いますか。</td>
<td>3.8</td>
<td>13.8</td>
<td>51.3</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>11.5</td>
<td>44.5</td>
<td>38.5</td>
</tr>
<tr>
<td>Q4 笑顔でリラックスして英語で話せたと思いますか。</td>
<td>2.5</td>
<td>6.3</td>
<td>48.8</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>23.1</td>
<td>46.2</td>
<td>19.2</td>
</tr>
<tr>
<td>Q5 以前より英語で発表する自信がつきましたか。</td>
<td>20.5</td>
<td>46.2</td>
<td>25.6</td>
<td>7.7</td>
</tr>
</tbody>
</table>
考察

質問1はA・Bの肯定的回答が17.5%→51.3%へ、また最も否定的なDの回答が33.8%→7.7%へと下がった。さらに、質問2では、A・Bの肯定的回答が28.8%→68.0%へ、C・Dの否定的回答が70.1%→32.0%へと大幅に変化した。このことにより英語の発達及び聴衆を見るアイコンタクトについては、「まこと」の授業を通して大きな進歩が見られる。しかしながら、質問3の身振り・手振りについては日本人在苦手な領域のせいか、まだまだの感じである。質問4については、A・Bの肯定的回答が13.8%→34.6%へ増えており、少し気持に余裕を持って話せる生徒の数の増加を示している。質問5については、A・Bの肯定的回答が66.7%で、「まこと」の授業が7割近くの生徒に英語でプレゼンテーションを行う自信を与えたと言えるであろう。

生徒の感想文より

・「まこと」をやる前は、英語でプレゼンテーションなんて本当にできるのかと思っていたけれども、最終的にやり遂げることができて、大きな達成感を感じることができた。だから、時間がなくて忙しかったけれど、自分の力になって良かったと思う。
・英語で発表するのはとても不安があったが、「まこと」の授業のおかげで恥ずかしさが無くなり、自信が持てるようになったので、とても良かった。
・初めて英国生徒の前で発表したときよりも落ち着いて話せた。場数を踏むことは大切だと思った。発表後にはまたやってみたいと思った。
・皆の前で発表するということで、だんだん慣れてきた。そのため、余裕が出てきて聴衆の方を見て発表できるようになった。
・英語でしゃべるのは、もっと勇気が必要だということを知られた。
・勉強との両立は大変だった。でも、今思うととても貴重な経験で良かった。司会もできて、人前で話すのが少し慣れた。
・みんなの前で発表するのは緊張するが、とても良い経験になったと思う。
・みんなの前で発表する機会が増えたので、前よりも緊張せずに発表できるようにになってきた。次は身振り・手振りもできるように学んでいきたいです。
・中学時代にこのようなことを経験したことが無く楽しかった。人前で話す力が向上した。通常授業より「まこと」の授業の方が英語力がアップするものだと分かった。
・もっと、時間に余裕を持って準備をしたかった。でも英語でプレゼンテーションをして、英語の自信が少しついたし、パワーポイントの作り方も良く分かった。
・「まこと」の授業はプレゼンテーションのみならず、数多くのプラス要素を私達に与えてくれたと心から思っています。今回授業のまとめ方に苦労しましたが、「僕も
頑張るから君も頑張って。」という姿勢でお願いすると、皆がついてきてくれたのがとても嬉しかったです。
・以前もメコン国際会議に参加したので、英国も含むとプレゼンテーションは3回目ですが、かなり自信がつきました。ただ、急な質問にはうまく答えられません。更に英語力を鍛えて頑張りたいです。
・とても将来に役立つ授業。これからもずっと続けていくべきだと思う。
・この発表での経験は私達の未来を切り開く力になると思う。今後も、このような企画を続けていって欲しいと思う。
・英語で発表する機会が得られたし、全体的にとても楽しかった。
・時間数が少ないため、放課後の作業などが多く苦労した。もっと準備時間を増やしてほしかった。
・英語って難しいなぁと考えて思ったけれども、少し楽しかった。
・人前で話す点でも、英語で練習するという点でもとても良いと思うので、今後も続けるべきだと思う。

仮説の検証
「まこと」の授業による、英語でのプレゼンテーションの取り組みは、生徒達に大きなインパクトを与えた。生徒達は国語科の指導で発表をするまでは先の見通しが持てたであろうが、英語の指導が始まってからはこれまでにない圧力を感じながら、本当にできるのかという半信半疑の気持ちで放課後・土曜日の時間を利用して一生懸命努力奮闘していた。その成果は、生徒の感想やアンケートの結果に表れている。この授業が2010年3月の国際科学会議の発表に向けて、少なからず彼らに自信を与えたと言えるだろう。
新聞や科学雑誌を読む習慣をつけよう

現在、洞爺湖でサミットが開かれていますが、現代の政治・経済の問題の根底には、エネルギー・環境問題があります。18世紀後半、英国に起こった産業革命に始まる機械文明は、科学・技術の急激な発達を促し、人類に多くの便利さと多くの困難・不幸をもたらしてきました。この困難を乗り越えるには、人間の価値観の転換は言うまでもありませんが、さらなる科学・技術の発展がどうしても必要です。

SSHに指定された大手前高等学校ですが、君たちの中には、新聞も余り読まない人もいるようです。社会の動き・世界の動きと君たちの日々の生は連動していますし、君たちが将来、発明・発見・開発していく技術も、世界中の多くの人々の生にさまざまな影響を及ぼします。ただすれば、君たちは社会の動き・世界の動きに無関心でいいのでしょうか。

シラバスにもありますように、大手前高校国語科では1年生の後期から、「新聞探検カード」というものを利用しています。これは、各自の興味に応じて新聞（または雑誌）の記事切り抜き、その記事についてのコメントとともに記録していくというものです。

SSHとしての君たちの今年度末での目標は、理科や数学に関するトピックを英語でプレゼンテーションする力を持つことができるようにあります。既にお話ししたように、まず日本語で身近なトピックをプレゼンする、次に日本語で各自の興味に応じて理科や数学に関連するトピックを選び、プレゼンする。最後に、それをさらに英語で（単に英語訳するのではありません）プレゼンする、以上のようなステップを予定しています。

その最初のステップとして、18日までに身近なトピックでプレゼン原稿をスライド8枚の規模で提出してもらうことになっています。このプレゼン原稿は8月に相互批評し、どのような画像やトークが効果的なのかを考えるヒントにします。

もう一つ、この夏休みをきっかけとして、新聞や科学雑誌にも親しんでもらうため、「新聞探検カード」2枚を課題にします。後期には、各自の興味に従って5人編成の班（クラス8班）を作り、英語のプレゼンを目指します。自分がどのような分野に興味を持っているのかを見極める上でも、この作業は役立つはずです。

新聞や科学雑誌で、数学や理科に関するトピックを集め（一枚はエネルギーや環境の問題に触れさせてください。この問題を避けて科学・技術を語ることが不可能な時代です）、切り抜いた記事を貼付し、その記事に対する意見・感想を書いて、8月最初の現代文の授業で提出してください。
（生徒向け説明文）

「まこと」授業は以下のように進めます

2008.10.8

◎目的
・後期中間考査までは、日本語によるプレゼンテーション力の養成を目的とします。
・後期中間考査以降は、英語によるプレゼンテーション力の育成を目的とします。
・研究テーマ別のプレゼンテーション（研究課題プレゼン）を作成し、発表を聞く作業を通じて、理数系全体の、理数系の基礎知識のレベルアップを図ります。このテーマは君たちが実験や観察を通じた研究・立証していく種類のものではなく、調べ学習を通じた情報リテラシーの養成、数学・科学についての基礎知識の拡充、プレゼンテーション方法の理解、を目的としたものです。テーマの選定、制作の際には、数学・理科ほか関連教科の先生方のアドバイスを受けることができます。
この課題プレゼンは、中間考査以後、英語化していくことを前提としていますので、テーマの選定に当たっては、専門的すぎるものは避けましょう。

（班別プレゼンテーション タイトル）

7組A班 テンフラバス（バイオディーゼルエンジンで動くバスと実現までの課題）
　B班 発展途上国と公害（先進国によってもたらされた公害と先進国の責任）
　C班 ゴミ分別の重要性（社会におけるゴミ分別の役割と効果）
　D班 中国の大気汚染（黄砂と光化学スモッグ）
　E班 北極の絶滅危惧種（北極圏に生息する絶滅を危惧される動物とその原因）
　F班 バイオマス（バイオマスとは何か、その特徴と将来性）
　G班 太陽光発電（その仕組みとこれから）

8組A班 異常気象（その実態と地球の未来）
　B班 ヒートアイランド現象（その原因と実態、対策）
　C班 軌道エレベータ（その利便性と建設上の問題点）
　D班 太陽フレア（その発生原因、地球への影響）
　E班 微生物燃料電池（微生物を利用した燃料電池の概要、利用、問題点）
　F班 地球温暖化と海面上昇（上昇の原因、過去のデータ、その影響と対策）
　G班 原子力発電所（発電の仕組み、火力発電・水力発電との違い）
　H班 上町断層（地震の予知、被害予想、国レベルの対策、家庭での対策）
2 理想（のぞみ）
（1）仮説の設定
論理的説明能力の育成に重点を置き、論理的な考え方と科学的な考察・判断・検証の道具を与え、その技術能力を習得することを目指して統計学の検定について学習する。ここに養った力は後続の課題研究『サイエンス探究』で生かされ、課題研究を充実するための基礎学習（スキルの習得）となるであろう。
「のぞみ」はカリキュラムでは第2年度から実施することになっているが、プレ・サイエンスの一環として「統計入門講座」として実施した。

●研究のねらい
以下の3点をねらいとして、統計入門講座を実施する。
①講座実施の前提として、統計について生徒の知識・理解の度合いを把握することが不可欠である。本研究では、本校理数科入学生の統計に対する知識・理解の状況を数値データに基づいて明らかにすることを第一のねらいとする。
②2年次『理想（のぞみ）』における統計・データ解析学習の予備知識を準備する。
③次期学習指導要領において扱われることとなる統計・データ解析分野についての指導経験を蓄積することにより、これまでの指導経験の少ない分野についての教材開発および教師の力量向上につなげる。

●研究の仮説
A）現在の学習指導要領のもとで学んできた生徒（平成20年度入学生）は、資料の整理や統計の初歩に関する知識が十分ではなく、統計についての必要性と知識理解との間には相当の隔たりがあるものと予想する。
B）本講座の実施により、それまで視野の中になかった統計分野に対して主体的に関心をもつ生徒が増加し、知識理解が促進するものと期待できる。
なお、仮説検証型の研究とは別に、ねらい③に挙げた指導経験の蓄積の観点から実践研究を継続する。

（2）内容・方法
●研究の内容
①統計に関する質問紙調査を実施し、生徒の統計に対する理解度を把握する。
②土曜学習活動日を利用し、後期に65分6回の統計入門講座を実施する。
③教材作成、実施上の困難、配慮すべき点などを蓄積し、次年度以降の継続研究の基礎とする。
研究の方法

①質問紙調査の実施
実施日：平成20年7月第2週の数学授業時
対象生徒：1年生理数科80名
質問項目：4.資料（1）に調査結果と共に記載
※作成した質問項目は、大阪府立大学大学院理学系研究科准教授・林利治先生に事前に見て頂き、ご助言を頂きました。

②統計入門講座の実施
対象生徒：1年生理数科80名
統計入門講座の指導内容（概略）
第1回 平成20年10月25日（土）
資料の整理・度数分布・ヒストグラム・平均値・中央値・最頻値
偏差・分散・標準偏差
第2回 平成20年12月13日（土）
四分位点・箱ひげ図・和の記号Σ・データの標準化
第3回 平成20年12月20日（土）
データの標準化・偏差値
第4回 平成21年1月17日（土）
相関図（散布図）・相関係数
第5回 平成21年2月7日（土）
確率分布（1）
第6回 平成21年2月14日（土）
確率分布（2）
検証には、質問紙調査の回答集計（4.資料に記載）および、「数学レポート」において生徒が選んだテーマの現れ方の検討を用いる。

（3）検証
A）質問紙調査の回答集計結果は後の「（4）資料」に記載している。この結果、以下のようない特徴が読み取れる。
①意味理解を問うⅠ.の質問への回答では、平均値を順位の真ん中あたりを意味すると誤解している生徒が36.3%存在する。また、用語についての知識を問うⅡ.の質問への回答では、度数分布という言葉の意味を説明できるかという問いに対して「説明できる」「ある程度説明できる」と答えた生徒がわずか15.1%しかおらず、約85%の生徒が否定的な回答を寄せている。この結果は、事前に予想した以上に、仮説を示した状況が強く存在することを示すものである。
②統計的手法を理解することの必要性の認識について問うⅢ.の質問への回答では、多くの分野について「おおむね必要」「やや必要」という肯定的回答が高い数値となる。
った。このことは、生徒は、統計の必要性をある程度認識していることを示している。それだけに、必要性の理解と①で述べた知識理解の度合いとのギャップが際立つ調査結果となった。
これらの結果は、第一の仮説を裏付けるものと考えられる。

B) 『数学レポート』作成に際し、生徒は自由にテーマを設定している。このうち、統計に関するテーマの数は以下のように変化した。

第一回（4月末〜5月初旬）0件
7月に統計に関する質問紙調査実施
第二回（夏期休業期間中）2件「ヒストグラムについて」「偏差値70をとる点数」
9月に特別講義、10月から統計入門講座開始
第三回（冬期休業期間中）4件「ベイズ統計」「統計から予測へ」「大数の法則」
「人間の直感 コイン投げを通じて考えた人間の思考」「ゲーム理論で考える野球」（ゲーム理論自体ではなく、レポート内で統計を扱っている）
この事実は、第二の仮説の成立をある程度示唆するものである。

次年度より本格的に『理想（のぞみ）』が始まる。本年度はその前段階として、統計に対する基礎的な知識を得ることを一つの目的とした。また、統計学に対しての興味・関心を高めるための取り組みを行った。その結果、検証A)、B)に見られるとおり、目的がおおむね達成できたようである。しかしながら、統計の有用性については活用段階まで進まないと認識が難しい面もあるので、今後は教材を工夫し、具体的な内容も取り扱いながら授業を展開していきたいと考えている。
資料1 「統計」についてのアンケート調査 および 回答集計のグラフ

性別： 男子 女子（←マルをつけてください）

I.
次の文について，適切であると思いますか。下の選択肢のうち最も近いと思うものの記号に○をつけください。

選択肢凡例
ア. 強くそう思う
イ. ややそう思う
ウ. あまりそう思わない
エ. まったくそう思わない

1. 「平均点が75点の試験で，自分はちょうど75点をとった。このことから，自己は受験者全員の真ん中あたりの成績順位だということがわかる。」
2. 「自分の国語の試験成績は平均点より5点上，数学の試験成績は平均点より8点上だった。このことから，自己は国語より数学の方が受験者全員の中で成績上位にいるということがわかる。」
3. 「7月に全国で実施される学力テストを受けたら数学の偏差値が65という結果が返ってきた。9月に校内の試験で数学の偏差値が60という結果が返ってきた。これは，自分の成績がこの2ヶ月間の間に下がったことを示している。」
4. 「5月に受けた校内の数学の試験で得点87点，偏差値60という結果が返ってきた。9月に受けた校内の数学の試験で得点62点，偏差値65という結果が返ってきた。これは，校内における自分の相対的な成績がこの4ヶ月間に上がったことを意味している。」

回答集計 下から順にア．強くそう思う →イーウ→ エ．まったくそう思わない
グラフ内の数値は人数を表す。
次の用語について、その意味を知っており、人に説明することができると思いますか。
下の選択肢のうちもっとも近いと思うものの記号に○をつけてください。

選択肢凡例
ア. 説明できる
イ. ある程度は説明できる
ウ. あまり説明できない
エ. まったく説明できない

5. 平均値
6. 中央値（メディアン）
7. 最頻値（モード）
8. 度数分布
9. 階級値
11. 期待値
12. 分散
13. 標準偏差
14. 偏差値
15. 相関図
16. 相関係数

回答集計
下から順にア. 説明できる →イ →ウ → エ. まったく説明できない
グラフ内の数値は人数を表す。
III.
次の分野において、統計的手法に対する理解がどの程度必要だと思いますか。下の選択肢のうち最も近いと思うものの記号に○をつけてください。

選択肢凡例
ア. おおいに必要である
イ. やや必要である
ウ. あまり必要でない
エ. まったく必要でない

17. 工学の分野
19. 数学・数理科学分野
21. 心理学関係の分野
23. 文学関係の分野
25. 歴史学関係の分野
27. 社会学関係の分野
29. 経済・経営学関係の分野

回答集計 下から順にア. おおいに必要である →イ→ウ→ エ. まったく必要でない
グラフ内の数値は人数を表す。
IV.
あなたは、現在の社会において、どのような場面で統計が利用されていると思いますか。思いつくものをいくつでも、別紙回答用紙に書いてください。(記述回答)
なお、回答にあたっては、1つの枠の中に1件だけ記入してください。

別紙回答用紙の枠内に記入

V.
30. あなたは、自分が将来どのような分野を専攻し、どのような職業につけよう等で（たとえ現時点での進路希望が明確でなくても）統計について理解しておくことは役に立つと思いますか。下の選択肢のうち最も近いと思うものの記号に○をつけてください。

選択肢凡例
ア. 強くそう思う
イ. ややそう思う
ウ. あまりそう思わない
エ. まったくそう思わない

回答集計

以上です。協力ありがとうございました。

※注 実際の質問紙では、それぞれの質問項目の下に ア〜〜〜〜イ〜〜〜〜ウ〜〜〜〜エ〜という回答メモ欄を設けたが、ここでは省略した。また、別紙回答用紙（入力票）を用意し、ここへ各自の回答を記入させる上で回収したが、回答用紙を省略した。
資料2 設問別集計結果

「統計」についてのアンケート調査 回答集計結果

調査対象：大手前高校理数科1年生80名
調査時期：2008年7月第2週の数学授業時

<table>
<thead>
<tr>
<th>設問</th>
<th>ア</th>
<th>イ</th>
<th>ウ</th>
<th>エ</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>20</td>
<td>38</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>23</td>
<td>36</td>
<td>12</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>21</td>
<td>23</td>
<td>26</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>33</td>
<td>4</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>41</td>
<td>9</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>69</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
<td>21</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>23</td>
<td>22</td>
<td>28</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>34</td>
<td>22</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>64</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>18</td>
<td>35</td>
<td>17</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>40</td>
<td>14</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>18</td>
<td>39</td>
<td>36</td>
<td>5</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>36</td>
<td>30</td>
<td>12</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>37</td>
<td>35</td>
<td>5</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>21</td>
<td>34</td>
<td>30</td>
<td>11</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>33</td>
<td>16</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>28</td>
<td>36</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>39</td>
<td>30</td>
<td>9</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>34</td>
<td>26</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>26</td>
<td>36</td>
<td>35</td>
<td>8</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>27</td>
<td>34</td>
<td>37</td>
<td>6</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>33</td>
<td>30</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>29</td>
<td>54</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>38</td>
<td>8</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>設問</th>
<th>ア</th>
<th>イ</th>
<th>ウ</th>
<th>エ</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.3</td>
<td>25.0</td>
<td>47.5</td>
<td>16.3</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>10.1</td>
<td>29.1</td>
<td>45.6</td>
<td>15.2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>12.5</td>
<td>26.3</td>
<td>28.8</td>
<td>32.5</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>51.3</td>
<td>41.3</td>
<td>5.0</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>27.5</td>
<td>51.3</td>
<td>11.3</td>
<td>10.0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>2.5</td>
<td>10.0</td>
<td>86.3</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>2.5</td>
<td>5.0</td>
<td>92.5</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>3.8</td>
<td>11.3</td>
<td>26.3</td>
<td>58.8</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>2.5</td>
<td>5.0</td>
<td>92.5</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>8.8</td>
<td>28.8</td>
<td>27.5</td>
<td>35.0</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>13.8</td>
<td>42.5</td>
<td>27.5</td>
<td>16.3</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>1.3</td>
<td>8.8</td>
<td>90.0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>5.0</td>
<td>13.8</td>
<td>80.0</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>11.4</td>
<td>22.8</td>
<td>44.3</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>1.3</td>
<td>1.3</td>
<td>6.3</td>
<td>91.3</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>95.0</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>31.6</td>
<td>50.6</td>
<td>17.7</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>48.8</td>
<td>45.0</td>
<td>6.3</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>45.6</td>
<td>38.0</td>
<td>15.2</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>46.3</td>
<td>43.8</td>
<td>6.3</td>
<td>3.8</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>42.5</td>
<td>37.5</td>
<td>13.8</td>
<td>6.3</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>35.0</td>
<td>41.3</td>
<td>20.0</td>
<td>3.8</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>3.8</td>
<td>35.0</td>
<td>45.0</td>
<td>16.3</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>48.8</td>
<td>37.5</td>
<td>11.3</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>13.8</td>
<td>42.5</td>
<td>32.5</td>
<td>11.3</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>45.0</td>
<td>43.8</td>
<td>10.0</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>43.0</td>
<td>46.8</td>
<td>7.6</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>17.5</td>
<td>41.3</td>
<td>37.5</td>
<td>3.8</td>
<td>100</td>
</tr>
<tr>
<td>29</td>
<td>67.5</td>
<td>23.8</td>
<td>7.5</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>41.8</td>
<td>48.1</td>
<td>10.1</td>
<td>0.0</td>
<td>100</td>
</tr>
</tbody>
</table>
3 SS物理

（1）仮説の設定
『SS物理』の開始にあたって、次の3つの仮説をたて、生徒が早期に物理全般の概観を得られるように、いくつかの取り組みを行った。

A) 「力」からの導入により、物理を理解する基礎を早期につくることができる。
「物理Ⅰ」の多くの教科書などでは、「運動」→「力」→「運動の法則」の順に展開されているが、私達は、「力」→「運動」→「運動の法則」の順に展開することを試みた。物理は、物体が受ける力を図示するところから考察する場面が多く、「力」から導入することにより、物理全般を理解する基礎を早期につくることができるのではないかと考えた。

B) 「生活の中の電気」を概観することにより、物理を幅広く見ることができる。
本校では、限られた時間で効率よく進めるために、「物理Ⅰ」の学習は物理の基礎である「力学」からはじめ、続いて「熱」、「波動」の順に進め、「電磁気」は概観することに留め、3年生で「物理Ⅱ」を学習するときに「電磁気」を詳しく扱ってきた。そのため、生徒が「電磁気」を含めた物理全般を理解することが遅くなってしまう。この点を克服するため、1年生において、「物理Ⅰ」の単元「生活の中の電気」の学習を、力学の学習と並行して行うことにより、生徒が早期に物理全般を見ることができるのではないかと考えた。

C) 「発展的な学習」の実施により、興味・関心や探究心を高めることができる。
学習指導要領には、「物理Ⅰ」の単元「生活の中の電気」の狙いとして、「便利な生活を支えている様々な技術には、物理学の成果、特に電気に関することが大きくかかわっていることを観察や実験を通して気付くようにする」ことをあげている。高等学校で学習する物理学、特に電磁気学は、コンピューター、携帯電話、近年飛躍的な発展を遂げたデジタル家電製品などの最も重要な基礎であり、エレクトロニクス社会、情報通信社会の根幹を支えている。私達は、電磁気分野の「発展的な学習」を、1年次から実施することにより、生徒が日常生活や現代社会と物理学の関わりが見ることができる物理や科学技術に対する興味・関心や探究心を高めることができるのではないかと考えた。

（2）内容・方法
３つの仮説についての検証を行うため、1年次の物理の学習について、いくつかの試みを実施することにした。しかし、これらの試みを実施するには、授業の時間数では難しいことがはっきりしてきた。仮説 A) （「力」からの導入）については授業時間内に実施することができたが、仮説 B) （「電気分野」を概観）については授業時間外で全員を対象に、仮説 C) （「発展学習」の実施）については授業時間外に希望者を対象に実施した。

A) 「力」からの導入
『SS物理』の対象である理数科80名を対象に、物理の学習を「力」から導入し、
1年後期の物理の授業を「力」→「運動」→「運動の法則」の順に展開した。

B)「電気分野」の概観
電磁気の学習が授業で開始される前に、1年次のうちに、生徒が「生活の中の電気」を教科書で自学し、その上で、教科書の問いを考えてみることと、うず電流に関する実験をやってみることを、冬季課題として、早期に電磁気分野を概観することを試みた。

C)「発展学習」の実施
土曜日にSS物理講座として、『SS物理講座（エレクトロニクス体験）』（65分の体験授業を5回）を開講し、希望者を対象に、電磁気学の基礎的・発展的な内容の学習を行い、電子回路やその応用に関する実験が体験できるようにした。具体的には、半導体、トランジスター、ダイオードの学習と関連させ、ディジタル回路による演算や記憶のしくみを理解する実験や、センサーやモーターを接続して電子回路による制御を体験する実験、パソコンによる回路計測実験などを実施した。理数科の希望者だけでなく、普通科の希望者も対象とし、理数科41名、普通科44名の生徒が受講した。

(3)検証
1年理数科80名に対し、確認テスト・アンケート・感想等により仮説を検証した。

A)（「力」からの導入）の確認テスト・感想による結果
物理の基礎となる「力」から導入し、「力」→「運動」→「運動の法則」の順に授業を展開した本年度と、従来の通り（「運動」→「力」→「運動の法則」）の順に授業を展開した昨年度との生徒の成績を比較すると、少し向上の傾向が見られた。また、生徒の様子を見ていると、単元の理解がスムーズにいったように思う。これは生徒の事後感想からも「力の原理を知ることで運動が理解しやすくなった」、「力を図示し、力によって運動がどのように変化するのかが理解しやすくなった」という声があった。しかしながら、この評価に関しては、観測データの収集が難しく、今回は詳しい分析には至らなかった。次年度は、評価法も含め検討したいと考えている。

B)（「電気分野」を概観）のアンケート結果
「生活の中の電気」について、教科書の自学と、問いを考えてみることを冬季課題としたことについて
①電気は、課題だけでなく、授業で扱ってほしい 65％
②電気は、課題形式でいい 25％
③1年次は電気は触れず、力学のみとしてほしい 6％
④その他 4％

3分の2の生徒が授業で扱ってほしいと考えている。これは、第2学年に以降に授業で扱うことを十分に説明していたなかった結果でもあるが、「教科書だけでは、わ
分からないところがある」という声が多かった。課題形式でいいという理由として「中学校の理科から、理解できるから」が多かった。①と②をあわせた90%の生徒が、1年次から電気を扱うことを求めていることは、注目すべき結果である。

C) 「発展学習」の実施）のアンケート結果
土曜日に『SS物理講座（エレクトロニクス体験）』を開講したことについて
①エレクトロニクス体験を、土曜講座だけでなく、授業で扱ってほしい 31%
②エレクトロニクス体験は、土曜講座で行うのがいい 60%
③1年次はエレクトロニクス体験を行わず力学に専念するのがいい 5%
④その他 4%

「土曜講座だけでなく、授業で扱ってほしい」という意見として、「楽しいから、授業でも扱ってほしい」という声が多かった。また、「理数科は、いろいろなことを授業で体験すべき」「理数科の生徒は、エレクトロニクスをよく理解することが必要」という積極的な声もあった。一方、「土曜講座で行うのがいい」という意見が60%を占め、意見として、「授業で理解し、土曜日にゆっくり実験や工作するという形がいい」、「この内容を授業で扱うのはたいへん」、「全員ではなく、希望者で行うのがいい」という声が多かった。①と②をあわせた91％の生徒が、電磁気の発展的な学習や体験の機会を持つことに賛成している。

これらの仮説の検証は、1年次だけで行うことは難しく、『サイエンス探究（課題研究）』が始まる2年次、3年間の『SS物理』が完了し『課題研究発表会』が行われる3年次において、振り返って検証する必要がある。
4 ＳＳ化学
(1) 仮説の設定
「化学Ⅰ」「化学Ⅱ」の内容を再配置し、理論分野、無機分野の教材を効率的に教授することは、生徒の理解を高め、課題研究に必要な知識を早く提供することができるであろう。
(2) 内容・方法
1年生理数科で「ＳＳ化学」として1年生前期1ユニット、後期1.5ユニットを実施した。「物質」に対して理解を深めたり、興味・関心を高めるためにできるだけ実験を行った。
まず、新入生オリエンテーションの1時間を利用して化学実験室の利用方法の説明を行った。実験器具の説明やガスバーナーの使用法等資料集などで写真で説明されているものを実際に手で触れさせた。これが化学への興味付けの最初であると考えて実施した。『サイエンス探究』では生徒自らが実験計画を立てて実験を行っていかなければならない。そのために実験器具の安全な使用方法は早いうちから理解するべきであると考えた。実験は危険を伴うため絶えず自分の身を守る事を理解させるために、実験時は購入した安全めがね着用することを義務付けさせた。
・身近に存在する水素については、水素の性質を知るとともに少量の水素の点火実験については中学校時代から行っているが、さらに進めて一升瓶中に水素を捕集し点火して爆発を見せるなど少し刺激的な反応を見せるようにして印象づけさせる事をした。
・中和滴定では、ビュレットを使って行う従来の方法で実施した。それと平行して本年度購入した計測装置で中和滴定曲線を機器に描かせ確認しながら実験する方法をとることで、中和滴定曲線の理解を促すことを試みたが、期待するような曲線が描けず工夫が必要であった。
・酸化還元滴定では中和滴定実験を一度行っているので実験操作については充分理解できているので、実験をさせながら色の変化等を理解させて、酸化還元滴定での量的関係を理解させた。
2年次では「化学Ⅱ」の範囲である気体の性質・気体の法則・気体の状態方程式などについても、効率的に学習する予定である。
写真：SS化学Ⅱの風景
学習計画

<table>
<thead>
<tr>
<th>期間</th>
<th>教科書</th>
<th>内容</th>
<th>目標</th>
</tr>
</thead>
<tbody>
<tr>
<td>前期中間</td>
<td>第1編 物質の構成と構成粒子</td>
<td>混合物・純物質 單体・化合物・元素 原子・分子・イオン 原子核・電子・電子配置 周期律</td>
<td>物質の構成と構成粒子を説明できる 物質の構成粒子を説明できる 原子構造とイオン生成を説明できる 物質の分類を説明できる イオンの結合を説明できる</td>
</tr>
<tr>
<td></td>
<td>第1章 物質の構成</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第2章 物質の構成粒子</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>前期期末</td>
<td>相対質量・原子量・分子質量 式量・物質量・モル アボガドロ数 溶解・溶液・溶液・液質・濃度 化学反応の量的関係</td>
<td>原子量・分子量・式量を計算できる 物質量・質量・体積を計算できる 濃度などを計算できる 化学反応式を書き、計算できる 化学の基本法則を説明できる</td>
</tr>
<tr>
<td></td>
<td>第3章 粒子の相対質量と物質量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>后期中間</td>
<td>酸・塩基・pH・価数・電離度 中和反応・塩・中和酸塩 周期表・元素の分類 典型金属元素 潮解・両性元素・複塩</td>
<td>酸・塩基の性質と用語を説明できる [H(^+)], [OH(^-)], pHを計算できる 中和の式を書ける、容量を計算できる 塩の性質と塩の定義曲線を説明できる 1・2 族、両性金属の性質を説明できる</td>
</tr>
<tr>
<td></td>
<td>第2章 酸と塩基の反応</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第3章 無機物質</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>后期期末</td>
<td>酸化・還元・酸化数 酸化還元定数・酸化力 非金属元素の単体と化合物 ハロゲン・オキソ酸・接触法 ハーバー法・オストワルト法</td>
<td>酸化還元の定義・酸化数を説明できる 酸化還元のうつりを計算できる 酸化還元の量的関係を計算できる 17・16 族元素の性質を説明できる 15・14 族元素の性質を説明できる</td>
</tr>
<tr>
<td></td>
<td>第1編 物質の変化</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第2章 酸化還元反応</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第3編 無機物質</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第6編 無機物質</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 検証
効率的に授業を行うため単元ごとに目標を設定し取り組んだが、授業時数の関係もあり予定通りには実験を多く取り入れることはできなかった。今後は、いかに実験を効果的に授業に組み込んでいか、あるいは視覚で印象づけるために、コンピュータ、視聴覚機器等を活用するかが重要であると考えている。今回は、十分な検証ができなかったが、今後は生徒の状況を把握するための調査票等を実施し分析をしていくつもりである。

5 S S 生物
(1) 仮説の設定
生物学の基礎的な分野一細胞や生殖・発生、遺伝一について講義し、それぞれの理解に必要な実験を行う中で、特に生徒自らが調べたり考えたりすることに重点を置き、その姿勢が日常的にるように授業を行う。また、発展的な内容、例えば再生医療など最新の医療の内容や、DNAの最先端の情報などにも触れ、新しい生物学の成果を常に話題にする。このことによって、生徒の興味・関心を向上させ、課題研究に必要な技術の習得をはかることができるであろう。
（2）実施概要

第一学年理数科（2クラス）の前期で授業を行った（1単位）。前期で授業したのは以下の第1章のほとんどの部分、第2章の生殖の部分、第3章の遺伝の法則の部分のみである。SS生物としての講義で、とくに重点を置いて取り組んだ部分を以下にあげる。

・第1章 細胞

細胞の研究の歴史については生物学史を詳しくたどり、先人たちはの研究の歴史を追体験できるよう講義した。細胞の構造については細胞骨格などにも言及し、細胞の形がどのように保たれているかと考えさせた。細胞小器官については共生説を紹介し、ミトコンドリアや葉緑体が過去に他の生物が共生した結果できあがった細胞小器官であることを講義した。生物は進化する、という視点を常にもたせるようにした。酵素については具体的な酵素名も数多くあげ、2年次のサイエンス探究で酵素を扱っても全く違和感がないように、かなり詳しいところまで講義した。受動輸送や能動輸送については、チャンネル、ポンプなど発展的な内容まで踏み込んだ。

・第2章 生殖と発生

生殖については、性の意義をも講義し、最近の学説を紹介した。種子植物の生殖については、身近な果実の形状について考えさせた。

・第3章 遺伝

遺伝の法則についてはその数学的な面を強調し、個別の事象を一般化したらどうなるだろうか、という視点から考えさせた。

・与えた課題

「大阪府高等学校生物教育研究会の指標生物調査２００８」への参加で得た手法を参考に、自宅周辺の身近な生物の調査を行うことを夏季休業中の課題とした。

（3）検証

探究的な活動として生物を対象にするには第一に、生物をしっかり観察する、という態度が重要である。「指標生物調査」はその態度育成の端緒となったと考える。また、与えた「生物発見」という課題では、身の回りの自然や博物館などで「自分にとっての発見」としたことをレポートにまとめさせた。生徒の中には、自宅の近所の公園でのセミの調査を行った者もいた。科学的な態度育成は「小さな発見」からはじまる。そういう点で興味・関心を高めることができ、課題研究に向けての調査準備にもつながったと考えている。ただし今回はデータの収集ができず詳細な検証を行うことができなかった。今後は、生徒の変容等を数値化するなど検証に必要なデータ収集を行っていくたい。
6 SS数学I

(1) 仮説の設定

●研究のねらい

理数科の特性を生かし、高等学校で学習する教科内容を再構成しつつ、早い段階で全体像が見渡せるようなカリキュラムを構築することにより、さまざまな数学的方
法を習得するのみならず、その方法を複合的に用いて数や図形などの数学的対象を
調べる活動に取り組むための前提条件を整備する。それにより、ともすれば方法の
習得に終始し、興味深い数学的対象を調べる活動に十分に取り組むことが難しい現
状の改善をねらいとする。

●仮説

本研究では、SS数学の構築だけを切り離して捉えるのではなく、「数学レポート」
など他のSSH研究課題を相互に結びつける基幹部分としてSS数学を捉えている。この観点から、以下の2つの仮説を設定する。

A) 早期に全体像が見渡せるSS数学の実施により、生徒が他のSSH研究課題と
しての取り組みの中で用いる数学的方法がより多様なものとなるであろう。

B) 数学的対象を調べる活動に取り組むことにより、方法の必要性への理解が深ま
り、数学的方法習得への動機付けとなって学習を促進するであろう。

なお、本年度は第一の仮説の検証に取り組む。第二の仮説は、SS数学実施後に、
次の段階としての数学的対象を調べる活動に関わるものであるため、第二年次以降
に検証する。

(2) 実施概要

●研究の内容

科目名：SS数学I（学校設定科目）

単位数：前期3単位、後期2単位

実施形態：2分割し、「SS数学I（数Ⅰ）」「SS数学I（数A）」として実施

科目の目標：

「SS数学I（数学Ⅰ）」では、方程式と不等式、2次関数、集合と論理及び図形と
計量について理解し、高等学校数学の基礎的な知識の習得と技能の習熟を図り、そ
れらを的確に活用する能力を伸ばすとともに、数学的な見方や考え方のよさを認識
できるようにする。

「SS数学I（数学A）」では、場合の数と確率、確率分布、平面図形について理解
し、高等学校数学の基礎的な知識の習得と技能の習熟を図り、それらを的確に活用
する能力を伸ばすとともに、数学的な見方や考え方のよさを認識できるようにする。

加えて、発展的内容や他分野・他教科との関連、数学史からの話題などを折に触
れて取り上げ、多面的に数学に接することによりその理解を深める。

他のSSH科目とともに論理的説明能力の育成を図る。
研究の方法

年間指導計画（進度計画）の概要

①「SS数学Ⅰ（数Ⅰ）」
前期中間考査まで 方程式と不等式，多項式の除法，分割式の計算，
2次関数（2次不等式まで）
前期期末考査まで 2次関数（続き），式と証明，複素数と方程式，
図形と計量（正弦・余弦定理の基礎）
後期中間考査まで 図形と計量（正弦・余弦定理の応用），三角関数
後期期末考査まで 三角関数（続き），指数関数・対数関数

②「SS数学Ⅰ（数A）」
前期中間考査まで 場合の数と確率
前期期末考査まで 条件付確率，確率分布，期待値，集合と論理，図形と方程式
後期中間考査まで 図形と方程式（続き），平面上のベクトル
後期期末考査まで 平面上のベクトル（続き），空間ベクトル

以上の進度計画に沿って授業を実施した。本科目は「理数数学Ⅰ」に代わる学校
設定科目であるから，理数数学Ⅰの科目内容を含む内容について本科目の目標に拡
げた知識習得・技能習熟・活用能力の伸長を図ることを第一の目標として実施する。
これについては定期考査等の方法により評価を行う。加えて，本SSH研究課題の
仮説を検証する為，他のSSH研究課題「数学レポート作成」と連携し，関連付け
ながら，そこで用いられる数学的方法の多様性を把握することにより仮説を検証す
る。

（3）検証
数学レポート（詳細は別項目参照）において生徒が用いた手法には，SS数学の学
習内容に関連したものとして，因数定理，三角比，指数対数，統計，確率，期待値，
平面幾何，有理数・無理数，数列，漸化式，など多岐にわたった。
例： 「正五角形の不思議」（三角比ほか）
「席替えの完全順列」（順列，確率，期待値）
「ハノイの塔とリュカについて」（数列，漸化式）
「利息が利息を呼ぶ」（指数・対数）
「無限」（集合）
「デカルトの円定理」（三角比，余弦定理）

このように，生徒は学んだ数学的方法を積極的に数学的活動の中に取り入れている。
そこで用いられる方法には，通常のカリキュラムにおいて1年次に学ぶものを超えた
内容も含まれており，このことは（早期に全体像をみせるカリキュラム）の実施が，生
徒の数学的活動の幅を広げ促進する可能性があることを示唆するものと考える。
第5章 サイエンス探究

1 物理分野

『サイエンス探究(課題研究)』は、来年度（H21年度）後期から、第2学年の対象に実施される。物理分野においては、第2学年の『サイエンス探究』の準備として、第1学年に対し、土曜日に『SS物理講座』を開講し、サイエンス探究に向けての取り組みを行った。この取り組みは、第1学年に対する『プレサイエンス探究』という位置づけに近いが、物理分野の『サイエンス探究』につながるものとして報告する。

（1）仮説の設定

理系の生徒は物理学の研究者になる者もいるが、物理学の知識を利用するか、もしくは工学など物理学を応用する研究者になる者が多い。また、文系の生徒は、社会における物理学の位置を知っておくことが必要であると思われる。現代のエレクトロニクス社会・情報通信社会を支える基礎は、量子力学、統計力学、電磁気学などの物理学の応用にある。物理学の応用や現代社会の中の物理学という角度からも、物理学の面白さを生徒が垣間見ることができるよう、土曜日に希望者を対象とした『SS物理講座』を開講した。さらに、この講座で学んだことを土台に発展的な探究活動を行うことができるように『自由研究』を実施した。私達は、これらの試みの中で次の仮説の検証を行うことを考えている。

仮説Ⅰ 幅広い視野から物理学を見ることができるようになる。
仮説Ⅱ 物理学への興味・関心や知的探究心を高めることができる。

（2）実施概要

A) 『SS物理講座（エレクトロニクス体験）』

実施時期 平成20年12月13日（土）からの土曜日（65分×5回）
対象 普通科の希望者・理数科の希望者（普通科44名・理数科40名）
内容

第1回 (12/13) 「LEDを点灯させてみよう」
○ ブレッドボードを使って回路を組み立てよう
○ ディジタルマルチメーターで回路計測
○ 電位の考え方を理解しよう

第2回(12/20) 「ディジタル回路演算と記憶のしくみ」
○ ディジタル回路の動作
○ ディジタル回路による演算
○ ディジタル回路による記憶（RSフリップフロップ）

第3回(1/17) 「ダイオードとトランジスタ」
○ 真性半導体・不純物半導体・ダイオード・トランジスター
○ ダイオード・トランジスターによる論理素子の作製
○ ダイオード・トランジスターによるフリップフロップの作製
第4回(2/7)「センサーとモーター -自律型ロボットのしくみへ-」
○ 反射型フォトセンサーの動作
○ モーターの動作
○ センサー → デジタル回路 → モーター

第5回(2/14)「コンデンサーとコイル -パソコンによる回路計測-」
○ 抵抗・ダイオード・トランジスターの電流・電圧計測
○ コンデンサーの充放電
○ 電磁誘導とコイル

B)『自由研究』
『SS物理講座』をもとに、希望者が発展的な探究活動を行っている。現在、普通科3名・理数科4名の7名のチームで、電子回路に関する研究を行っている。研究結果は、3月25日に行われた大阪府サイエンスフェスティバルで発表を行った。

（3）検証
放課後に自由研究が行われるなど興味・関心や知的探究心の高まりについて成果が現れてきているが、十分な検証は今回できなかった。次年度は客観性のあるデータを収集し分析を行いたい。
2 化学分野
(1) 仮説の設定
昨年度までは40人が同じ実験を行っていたが、今年は次年度からのSSH課題研究を意識して回数こそ少ないと2年生で課題研究を試みた。生徒の興味・関心に応じて実験のテーマを設定させ、課題設定から発表に至るまでの流れの中でどのような問題点があるかを知ることにより次年度のサイエンス探究に生かしたい。
今回は、
A) 課題テーマを自主的に設定することは意欲の向上につながる
B) 個人ではなくグループで取り組むことにより協調性が高まり、課題探究の深さにつながる
という仮説を設定した。

(2) 実施概要
実施時期 平成20年10月17日（金）からの毎金曜日（65分×9回）
対象 理数科2年生の希望者30名
（理数科82名で希望調査を取り、物理・化学・生物の3講座に分けた）
場所 本校の化学講義室、化学講義室、中庭
内容
●実験テーマ
A) シクロヘプタン（分光光度計）の活用
タンパク質濃度の測定実験、タンパク質溶液の吸光度測定、検量線作成
B) 簡易電気炉の活用
合金（黄銅・青銅・白銅）を造る
C) 教科書実験の検証
ルミノール反応、スライム作り、セッケン作り、エチレンの発生、実験室的製法等
D) 中学生対象授業
スーパーボールの作成、炎色反応を利用した実験
●研究発表会（11月25日（火）5限）
事前に作成した発表用のプリントを各班1枚用意し、それを見ながら持ち時間8分で発表。全班終了後、それぞれの担当者よりコメント。他教科の8名の教員が見学。
（3）検証
●生徒の感想より
・やりたいと思った実験を、自分たちで方法を考えたり工夫したりしながらすることができてとても楽しかったです。いい経験になりました。
・とても自由な環境で、自分が興味のあることに取り組めるのでよかった。違う班がすることもレベルが高く、見たこともないものだったので発表が楽しかった。
・とても大変でした。本当に何も分からなかったのでインターネットで何度も調べたり、本を読んだり、頭の中の知識を総動員させてやりました。集団で実験や作業をやるとき一番大切なることは協調性と周りをよく見るようにありました。最初私たちのは協調性がなくばらばらで個々別々に考えていることややっていることが違い、なかなか実験がスムーズに進みませんでした。協調性が少し出てきた後半はまだスムーズに進みました。しかし、後からいろいろ話を聞くと、何やっているかあまりわからないって言われてショックでした。一部の人々が実験するのではなく、みんなで分担し、何をしているかみんなで理解してやりたかったです。みんながお互いに周りをよく見て役割を分担して効率よくすれば、もっといろいろなことができたはずですね。周りをよく見ないと、自分だけ実験を進める、これは班全体を混乱させる原因になります。これらのことを踏まえて、これからの実験をやっていきたいです。とてもいい勉強になりました。
・私たちの場合はもっと計画的にすすめたらよかったと思います。たぶん、最初に決めたテーマがaboutすぎたのが原因の1つだと思うから、できるなら最終的に自分たちは何をしたいのかをきちんと話し合ってから、実験をはじめるといいと思いました。
●検証
アンケートの結果、発表の様子、および生徒の取り組み状況などから、積極的に課題研究に取り組めた様子がわかる。興味・関心に応じて自主的に課題を設定することは研究活動を進める上で必要であることが確認された。また、グループで取り組むことに協力し合いながらよい成果がでていることが分かる。一部、課題設定が不十分なため思うように進まなかったグループもあったようだが、この点については今後の課題として修正していきたいと考えている。発表時間は総時間数から考えて1時間で行ったが、来年度以降は発表練習を事前に行い、発表時間も増やして生徒の相互批評なども組み入れたい。SSH課題研究でも、できる限り自由度を高くして自ら実験計画を立てて実験し、失敗をしながらも先に進んでいく、考える力・探究心を養える科目にしていきたい。また、感想だけでなくアンケート等も実施し客観的な検証を目指したい。
3 生物分野

(1) 仮説の設定

興味・関心に応じた課題研究に取り組むことにより、生物に対しての意欲が向上し、探究する能力や態度を養うことができる、という仮説を設定した。

(2) 実施概要

実施時期 平成20年10月17日（金）からの毎金曜日（65分×9回）
対象 理数科2年生の希望者30名
（理数科82名で希望調査を取り、物理・化学・生物の3講座に分けた）
場所 本校の生物講義室、生物講義室、中庭

まず講題研究の説明を行い、テーマ設定とグループ決定に1〜2回、実験実施に6〜7回、実験結果のまとめに1回、研究発表に1回を当たった。課題研究のテーマや仮説の設定は各社の教科書や、過去の研究例を参考にして行わせ、2〜4人をひとつの班とするようにした。実験計画を最初に提出させるとともに、各回には実施した内容の報告を出させ、次回の計画および必要な器具・試薬なども報告させた。研究のまとめと考察については、班ごとに模造紙1枚のポスターを作製し、5分ずつの口頭発表を行い、報告書を作成することとした。以下に各班の研究内容を示す。

A) アリの道しるべフェロモン

・研究の概要

学校の中庭からクロヤマアリとヤマトシロアリを採集し、それぞれの頭部・胸部・腹部からエタノールで抽出した物質が道しるべフェロモンとして働くかどうかを調べた。また、ボールペン、食塩水、ソース、酢、コーヒー、洗剤、油、砂糖水、イソジン、エチレングリコールモノフェニルエーテル水溶液がそれぞれアリ、シロアリに与える影響も調べた。

・結果と考察

クロヤマアリ、ヤマトシロアリともそれぞれの腹部から抽出した物質に反応して抽出液の後をたどったが、他の部分からの抽出物には反応を示さなかった。ヤマトシロアリはクロヤマアリの腹部から抽出した物質に反応して後をたどり、異なる種の持っている物質にも反応するという興味ある結果を得た。

B) 身の回りに生息する微生物を調べる

・研究の概要

普段よく使うもの（硬貨）や清潔そうなもの（アルミホイル）、汚れたもの（エアコンのフィルター）などに微生物がどの程度付着しているかを、普通寒天培地に試料を置いて培養することによって調べた。
結果と考察
硬貨の中では、1円硬貨は周囲に微生物の繁殖がみられたが、5円、10円、50円硬貨は週間観察しても微生物の繁殖がみられなかった。繁殖がみられた硬貨の組成を調べたところ銅が共通して含まれているため、銅が微生物の繁殖を抑制しているものと考えた。

C) 納豆菌と乳酸菌―イイ菌たちを調べよう

研究の概要
納豆やヨーグルトの製造に欠かせない納豆菌と乳酸菌が、それぞれどのような状況で繁殖しやすいかを、温度（0℃、37℃、50℃）と栄養条件（寒天のみ、寒天＋ブイヨン、寒天＋砂糖、寒天＋牛乳）を変えることによって調べた。

結果と考察
納豆菌、乳酸菌とも0℃では増殖が見られず、37℃ではコロニーが観察され、50℃ではシャーレの全面に増殖がみられた。予想に反して50℃でもよく増殖することがわかった。どちらの菌も、寒天のみでは増殖せず、砂糖や牛乳を加えると増殖がみられ、ブイヨンを加えた培地で最もよく増殖することが確認された。

D) 掌の常在菌と殺菌力

研究の概要
私たちの掌にはどのような菌が付着しているのか、また、それらの菌を殺菌するには何が効果的なのかを消毒薬・うがい薬・洗剤・緑茶・梅干などを用いて調べた。方法としては、普通寒天培地に片方の手の掌を押し付け、次にもう片方の手の掌に試料を塗り付けてから別の培地に掌を押し付けて37℃で数日間培養してそれぞれの培地の表面を観察した。

結果と考察
掌を押し付けたところのほぼ全面に細菌類と思われるコロニーが観察された。細菌の種類は顕微鏡による形態観察から黄色ブドウ球菌、表皮ブドウ球菌、大腸菌と推測した。強い殺菌力が認められたのは消毒用エタノール、イソジン、マキロン、シャンプー、歯磨き、梅干、緑茶であり、中程度の殺菌力が認められたのは洗顔フォーム、キレイキレイ。ほとんど殺菌力が認められなかったのは酢、お手拭、市販の練りからし、わさびであった。

E) 植物と光の関係

研究の概要
植物の光屈性と光の波長（色）との関係、発芽と光の波長（色）との関係をレタスの種子と芽生えを用いて調べた。光屈性についてはサンプル管内に調整した寒天培地に種子を播き、そのサンプル管を黒画用紙で作った一方向からだけ光の入る箱に入れ、人工気象器に入れ4日間後に結果をみた。光の入る箱の入り口に赤・青・黄・緑（光を遮断）のセロファンを貼り、比較した。発芽については、水で湿らせたろ紙に種子を播き、それを入れたシャーレを赤・青・黄・緑のセロファンで覆ったものと覆わないもので発芽の程度を比較した。
結果と考察
光屈性については赤・黄はよく屈曲したが、青はわずかに屈曲し、緑・黒は発芽しなかった。発芽については赤・黄は発芽したが、青・緑は発芽しなかった。レタスでは、赤・黄の光が発芽にも屈曲にも有効であると考えられる。

F) Phosphorylase b
研究の概要
スルメイカから炭水化物分解酵素の一種 Phosphorylase b を抽出・部分精製し、その最適 pH、最適温度、金属イオンの効果を調べた。
結果と考察
スルメイカ Phosphorylase b の最適 pH は 7.0 付近、最適温度は 20℃ である。また、コバルトイオンと亜鉛イオンがかなり強い阻害物質として働くことが初めての知見として得られた。しかし、その反応機構とそれが糖代謝の中でどのような意味を持つかは、続いて研究する必要がある。

G) DNA の抽出
研究の概要
手軽に DNA を抽出できる材料を調べるため、納豆、バナナ、ブロッコリー、レバーからDNAが抽出できるかどうかを調べた。
結果と考察
納豆、バナナ、レバーは抽出できたが、ブロッコリーはうまく抽出できなかった。ブロッコリーがうまく抽出できなかったのは技術的な問題であると考えられる。

(3) 検証
自然に対する関心や探究心を高め、生物学的に探究する能力や態度を、我々の予想以上に習得したことが生徒の感想からも伺えた。生徒は放課後や昼休みにも積極的に実験室に来て実験や観察を行った。しかし、全体的に仮説の検証は不十分であるため、今後は到達度・満足度等についてのアンケート等を実施し、客観的なデータを収集し分析を行いたい。
4 数学分野

(1) 仮説の設定
数学の興味・関心に応じた分野について、少し発展的な内容まで調べ・学習することによりより深く数学に対する関心を高める、という仮説を設定した。

(2) 実施概要
実施時期 2008年12月中旬から週1回（65分×6回）
対象 理数科2年生の希望者82名
（理数科82名で希望調査を取り、各講座に分かれる）
場所 本校の各教室、LAN教室

内容
理数セミナーの数学講座は下記の6テーマで開講した。生徒自身で、自身の発展的学習の各テーマに対するレディネスについて振り返ることを目指し、テーマ選定にあたっての助言・指導は最低限にとどめることとした。

表1 テーマ一覧

<table>
<thead>
<tr>
<th>講座番号</th>
<th>講座名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>不思議の国の行列</td>
<td>行列を教科書から離れて、レベルを上げて取り扱う。行列とピタゴラス数、行列と漸化式、行列とマルコフ過程、行列と入試等。</td>
</tr>
<tr>
<td>B</td>
<td>数学工作 曲面を作ろう</td>
<td>阿原一志著「ハイプレイン のりとはさみで作る双曲面」日本評論社を参考に、曲面模型を作りながら、トポロジーという分野に現れるいくつかのアイディアについて学ぶ。</td>
</tr>
<tr>
<td>C</td>
<td>公式を導びく</td>
<td>いろいろな公式をいろいろな方法で導くことを学ぶ。</td>
</tr>
<tr>
<td>D</td>
<td>漸化式</td>
<td>前半は入試問題等を用いて、漸化式で表された数列の一般項を求める系統的な演習を行う。後半は各自が別個の課題に取り組む。</td>
</tr>
<tr>
<td>E</td>
<td>複素数平面</td>
<td>複素数平面について学ぶ。</td>
</tr>
<tr>
<td>F</td>
<td>コンピュータで数学を</td>
<td>ソートなどの様々なアルゴリズムを学び、実際にプログラミングを行う。</td>
</tr>
</tbody>
</table>

生徒の講座選択状況は下記の通りである。

表2 講座選択状況

<table>
<thead>
<tr>
<th>講座番号</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>7</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

-66-
各講座では、生徒の自主的な学びを促すために、発表形式を多く取り入れた。また、これまで学習してきた発表能力をさらに高めるため、レポート発表などを積極的に取り入れることとした。

図1は実際に講座Aで生徒が書いたレポートである。レディネスチェックを兼ねた事前学習として書かせたものである。講座では、前半数時間にわたって教員が講義を行い、後半の数時間で、講義内容をふまえながら、事前学習のレポートをもとに各自が発表する形式で指導を行った。

図1 生徒レポート

（3）検証
●生徒のアンケートより
実施日　平成21年2月20日（金）
有効回答数　81件
回答方法　「はい」「ふつう」「いいえ」から選択
質問項目
Q1 理数セミナーは普段の講義とは異なっていて刺激がありましたか？
はい　53　ふつう　20　いいえ　8
Q2 理数セミナーで何かを得たように思いますか？
はい　46　ふつう　25　いいえ　10
Q3 理数セミナーを受けて数学について少しは興味関心を持てましたか？
はい　39　ふつう　31　いいえ　11
Q4 今後もこのような講座があればいいと思いますか？
はい　47　ふつう　28　いいえ　6

アンケートの結果から、ほぼ仮説が検証できたと考えている。今後とも研究内容について深めていきたい。
第6章 国際科学会議
1 メコン5カ国国際会議

（1）仮説の設定
この会議は、2010年3月に実施予定の国際科学会議を意識して試みた。この経験によって、国際会議へのモチベーションを高め、英語でのプレゼンテーションの必要性を感じることになるであろう。

（2）実施概要
実施日時 10月31日（金）15:40〜17:00
対象 本校理数科1年生、および普通科希望者
場所 本校 視聴覚教室
内容
5ヶ国国際会議は本校生徒に英語による会議進行とプレゼンテーションを体験させ、出来るだけ多くの生徒が英語で意思疎通を図ることを目的とする。
メコン5ヶ国とはメコン川の川沿いに位置するカンボジア、ラオス、タイ、ベトナム、ミャンマーの東南アジア5ヶ国を指す。3:40〜5:00の80分にわたって"SYMPOSIUM on Environment at Otemae Senior High School"という環境問題についての国際シンポジウムを実施。司会・発表・質疑応答の全てを英語で行うという画期的な試みであった。大阪市環境事業協会・常務理事の平賀良先生から環境保全やリサイクル運動に関する基調講演をしていただき、1年生理数科の生徒男女各1名の司会の進行によりアルファベット順に各国がパワーポイントを用いて英語によるプレゼンテーションを行った。カンボジア「森林保護」、ラオス「廃棄物の処理」、ベトナム「都市部における大気汚染の脅威」、タイ「牛乳パックのリサイクル運動」についてプレゼンテーションを行った。大手前高校からは1年生理数科から2グループ（5名×2）が発表。「淀川の水質調査」、「淀川の歴史」についてフィールド・ワークを通じての調査結果の分析を交えて報告した。なお、JENESYSプログラムの中で実施した。

（3）検証
●生徒の感想文より
・淀川の水質調査を英語で発表するということが、これまで大変であるとは思いもしなかった。調査まではスムーズに出来ていたのだが、その結果を英語に訳すという作業は専門用語ばかりだったので、難解な用語で調べなくてはならなかった。また、リハーサルでは先生に前を向いて話すように指摘されたのに、当日は緊張してすっかり忘れてしまっていた。自分の英語がメコン5カ国の人には通じたかどうかは分からなかったが、人前で英語を使って発表するという経験が出来て自分の英語力向上につながったと思う。（本校女子）
司会をすることが決まった時とても嬉しかったけれど、初めてのことだったので同時にとても不安でした。でも、英文を考えたり読みを練習するのはすごくやりがいがあり、本番が待ち遠しいと思えるようになった。会議当日は朝から緊張して不安な気持ちになったけれど、本番は落ち着いて出来たと思う。途中でマイクが1本どこかへ行ってしまったり、色々大変だったけれど楽しいので司会ができてとても嬉しかった。今回司会を務めたことは、とても良い経験・思い出になったと思う。自分の英語の弱さなど他にも多くのことを学ぶことが出来て、本当に司会をやって良かった。これからももっと英語を勉強して、もしこの会社をやるならまた司会をやりたいと思った。（本校女子）

日本の友人が将来についてもっと考えさせるような難しい質問をしてくれましたが、私はそれが嬉しかったです。誰かが私を見てくれている、私はとても誇りに思いました。（タイ男子）

カ国の発表はすばらしく、良く協力していたと思います。日本の生徒はとても周到かつ徹底した準備をしていました。とても感銘しました。（ベトナム女子）

仮説の検証
予想以上の成果を今回の国際会議から得られた。英語で発表したり、意見を表すとの難しさを知り、同時に英語を聞き取ることが如何に大事であるかを感じてくれた。また、他国の生徒の英語力を知ると共に、他国の生徒に混じって英語による発表を体験したことによって、英語で発信できるという自信がついたようである。さらに、今回参加したタイ・ベトナム・ラオス・カンボジアの生徒にとっても英語は第2言語であり、互いが理解するための手段として英語が有用であることを生徒達は学んでくれた。

<table>
<thead>
<tr>
<th>内 容</th>
<th>そう思う</th>
<th>普通</th>
<th>そう思わない</th>
</tr>
</thead>
<tbody>
<tr>
<td>国際会議は有意義でしたか</td>
<td>56</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

（生徒アンケートより）
２ 英語集中講座
（1）仮説の設定
　集中的に時間をとり英語によるコミュニケーショントレーニングを実施すること
　は、国際学会議での英語によるプレゼンテーション力のスキルアップにつながり、
　人前で堂々と発表できる自信につながるであろう。

（2）実施概要
実施日時 12月25日（木）～27日（土）
対 象 希望者43名
場 所 ヒューマンアカデミー
内 容 国際学会議で英語で思考できるようになるための前段階として、英語力、特に
　話す・聞く力のブラッシュ・アップを目的として、英会話学校ヒューマン・アカデ
　ミーと提携してネイティブスピーカーのみによる集中授業を、冬季休業中に2.5日
　生徒に体験させる。
（1日目）
　最初は緊張をほぐす為講師による簡単な自己紹介とアイスブレーキングから始ま
　った。午前中はクラスによっては緊張と慣れない英語のため、簡単な指示も分から
　なく隣の生徒に聞いている生徒もいたが、後半になると生徒も英語に慣れてきたせ
　いもあり、英語で発言出来るのを楽しんでいたようであった。
（2日目）
　英語による指示もほとんどの生徒が理解し、質問にも答えられているようであっ
　た。また、分からない単語の意味なども簡単な英語を使っての説明で、理解できる
　ように工夫され、各レッスンの終わりにもう一度即席のクイズ形式で確認されるな
　ど、生徒にとってはいい勉強になっていた。
（3日目）
　これまでの総仕上げということで、5人程度のグループで班を作りディベートや
　ディスカッションに参加した。これまで自発的に英語を話すと言うことに恥ずか
　ながってい2日間会話練習をしてきたが、3日目は相手の発言を聞いてそれに対応し
　た発言を即座にするという難度の高い練習にチャレンジした。
(3) 検証

●生徒の感想文から

・3日間を通して私が強く感じたことは、「自分の意見を英語で話すのはとても難しい」ということです。言いたいことは頭に浮かんでくるのに、それを英語にすることが中々できず、とても悔しかった。やはり、文法等を本で学ぶことと比べて、実際に人と英語で話し合うのは、すごく大変なことだと思った。また、1日の大半を英語だけを使って過ごすのはとても疲れることだと感じた。先生によると、普段は使っていない脳の部分を英語は使うからだそうで、1日1日に相当な体力を使ったと思う。3日間はとても短かったけれど、英語についていろいろなことを学べたし、本当に楽しかった。これからも、もっと英語を勉強していきたいと思った。

・僕はこのセミナーを受けて、もちろん英会話力は伸びたと思います。でも、それ以上に積極的になる力がとても伸びたと思います。僕は今まであまり積極的な方ではなかったが、7組の女子も元気でやりやすかったということもあり、自分からたくさん発言することができました。今まではどんな雰囲気であろうと人に任せていたけれど、今回このセミナーでとても成長したと思います。そうして頑張って発言していると2日目のジム先生はとてもよく僕をあってくれました。英語が好きでもあんなに沢山英語でしゃべると、とても疲れました。でも外国に行くと、それどころではなくてずっと英語なので、もっと頑張らないかんと思いました。疲れただけで、英語は嫌にならず、むしろもっと好きになりました。

仮説の検証

生徒の感想やヒューマン・アカデミーのスタッフの話、また初日と3日目の授業を見学させてもらった印象から、生徒達の英語への適応力は日に日に向上し、最終日には英語を言葉として受け入れている様子が見られた。また、研修の実施前と実施後の生徒の確認テストでは、43人中30人の成績が向上しており、70%もの生徒に効果があった。今後は、機会をみて大学や学会等における英語による科学のプレゼンテーションに参加し力を作り続けていきたい。
第7章 交流活動

1 スーパーサイエンスハイスクール生徒研究発表会

(1) 仮説の設定

全国のSSH校が集まり発表しあうことは生徒達にとってのモチベーションを高め勇気づけられるであろう。また、各校の発表内容によって刺激を受けることにより、課題研究等にさらなる質の向上が期待される。

(2) 実施概要

実施日時　平成20年8月7日（木）～8日（金）
実施場所　パシフィコ横浜
参加者　理数科２年生3名（西浦珠央、澤田晃一郎、塩見 準）
指導者　金 義博
発表内容

・「フラクタルに関する考察」（二年 西浦珠央）
・「既約分数の和について」（二年 澤田晃一郎）
・「4次元多面体の視覚化」（二年 塩見 準）
事前指導
入学時から第2学年の夏まで、3回にわたって研究レポートを書かせた。その内容をもとに教員が優秀作を3点選考し、全体での指導を5回、個別指導を数回ずつ行った。全体指導計画は以下の通りの計画で行った。

表1 全体指導計画

<table>
<thead>
<tr>
<th>指導回数</th>
<th>指導内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>テーマの選定について</td>
</tr>
<tr>
<td>2</td>
<td>ポスターセッションの発表計画について</td>
</tr>
<tr>
<td>3</td>
<td>発表内容の相互批評（検討）</td>
</tr>
<tr>
<td>4</td>
<td>展示物の作成</td>
</tr>
<tr>
<td>5</td>
<td>発表内容の最終調整</td>
</tr>
</tbody>
</table>

5.2 4次元超立方体の実写
4次元立方体を実写化することを考える。次節の前節で述べた。

表1 全体指導計画

<table>
<thead>
<tr>
<th>指導回数</th>
<th>指導内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>テーマの選定について</td>
</tr>
<tr>
<td>2</td>
<td>ポスターセッションの発表計画について</td>
</tr>
<tr>
<td>3</td>
<td>発表内容の相互批評（検討）</td>
</tr>
<tr>
<td>4</td>
<td>展示物の作成</td>
</tr>
<tr>
<td>5</td>
<td>発表内容の最終調整</td>
</tr>
</tbody>
</table>

●事前指導
入学時から第2学年の夏まで、3回にわたって研究レポートを書かせた。その内容をもとに教員が優秀作を3点選考し、全体での指導を5回、個別指導を数回ずつ行った。全体指導計画は以下の通りの計画で行った。
① テーマの選定について
テーマの選定にあたっては、過去に生徒が取り組んだテーマを中心に検討するように助言を行い、具体的な内容については助言しないように注意を払った。

② ポスターセッションの発表計画について
ポスターセッションのブースを擬似的に再現し、自分たちの研究内容をより多くの人に知ってもらうためには、どのようなレイアウトを採用すべきか等の事項について、生徒間の討論を行わせた。

③ 発表内容の相互批評
事前に打ち合わせた各自の発表テーマについてのレポートを持ち寄り、相互に精読を行わせた。精読の際には、相互に積極的に質問を行わせ、曖昧な表現や検討不足、理解不足の内容についての徹底的な洗い出しを行わせた。

④ 展示物の作成

⑤ 発表内容の最終調整
数学科の教員を相手に模擬発表を行わせた。教員側からは積極的に発表内容についての質問を行い、生徒相互の精読の際に洗い出した検討課題についての最終調整を行った。

（２）検証
理科の発表の多い中、本校の発表は数学の内容についてのものであったので、多くの人の訪問があり質問を受けた。生徒達も他校の発表を見たり聞いたりして熱心に説明を聞いていた。また、本校はこの会で「ポスターセッション賞」を受賞した。これにより更に気持ちが高まり、今後の取り組みに弾みがついた。
2 大阪府教育委員会表敬訪問

（1）仮説の設定

「スーパーサイエンスハイスクール研究発表会」においてポスターセッション賞を受賞した。この成果を大阪府教育委員会に報告し、激励を受けることは、生徒にとっても学校にとっても名誉なことであり、今後のSSHに対する取り組みに弾みがつくであろう。

（2）実施概要

実施日時　平成20年8月22日（金）
実施場所　大阪府教育委員会
参加者　理数科2年生3名（西浦珠央、澤田晃一郎、塩見準）
内容
●指導の概略

大阪府教育委員会を表敬訪問し、全国SSH生徒研究発表会でポスターセッション賞を受賞した内容についての説明・発表を行った。発表に際しては、研究発表会での発表をさらに形式を変えて発表する機会ととらえ、レポートの配布とパワーポイントのプレゼンテーションを併用するスタイルをとることとした。レポートについては、実際に研究発表会で使用したレポートを、明らかに対策の訂正をのぞき、そのまま使用することとした。また、プレゼンテーションについてはパワーポイントを利用してそれだけ生かせるように、レポート内容の順序の組み替えや、内容の要約を行わせた。次の図1は、実際に発表で用いたスライドの一枚である。このスライドでは、図がプログラムにリンクしてありクリック操作により動画が再生されるように工夫がなされている。このように、できるだけ直感的に理解でき、かつ流れを止めないような工夫を行うように指導した。
図1 プレゼンテーションで用いたスライドの一枚

図形の立体視

- 正射影した3次元立方体
- 「実写」した3次元立方体
- 正射影した4次元立方体
- 「実写」した4次元立方体

（3）検証

多くの方に激励を受け生徒達にとっては大変光栄であったようである。自分たちの取り組みが高く評価されたことに対して、少し戸惑いもあったようだが今後も頑張っていきたいという決意を新たに持った。このような機会が得られて大変良かったと思う。
3 天王寺高校課題研究発表会への参加

(1) 仮説の設定

SSH校が主催する研究発表行事に参加することにより、共同で研究をしたり互いに発表をしあう機会を得、研究・学習活動を進めていく上で生徒のモチベーションを高める。

(2) 実施概要

日時 平成20年9月12日（金）
場所 阿倍野区民センター
参加者 理数科1年生3名
内容 大阪府立天王寺高等学校で行われたSSH研究発表会に参加。第2部でのSSH交流会（サイエンス・カフェ）ではミニ研究会発表、情報交換を行った。

(3) 検証

●生徒の感想より

・親近感を感じた。自分たちと同じ高校生が取り組んでいる様子を知って大いに刺激を受けた。頑張っていきたい。

・普段の学校では味わえない雰囲気があった。あのような発表ができるかどうか少し不安があるが、頑張りたいと思う。

●仮説の検証

生徒の感想および当日の生徒達の様子から、同じ意識を持って取り組む生徒達が一堂に会し交流を深めることは大変意義があった。いろいろな場での発表の機会を得ることは経験としても重要である。今回の機会ではサイエンス・カフェの中でも積極的に発言している生徒の様子がみられ、意欲の向上につながったものと考える。今後はSSHを経験した卒業生の協力も受け、このような会がより発展していくことによって、ますます大きな刺激と新たな発見をする場として機能することを期待している。
4 住吉高校課題研究発表会への参加

（1）仮説の設定
SSH校が主催する研究発表行事に参加することにより、共同で研究をしたり互いに発表をしあう機会を得、研究・学習活動を進めていく上で生徒のモチベーションを高める。

（2）実施概要
日　時　　平成21年2月9日（月）
場　所　　大阪府立住吉高等学校
参加者　理数科1年生5名
内容　　大阪府立住吉高等学校で行われたSSH研究発表会に参加発表。「北極の絶滅危惧種（Threatened Species of The North Pole）」をテーマに英語でプレゼンテーションを行った。

（3）検証
●生徒の感想より
・住吉高校の皆さんの発表を聞いてすごい研究をしているんだなあと驚きました。私たちもまだ課題研究に取り組んでいませんが、あのような発表が得られるか少し心配です。頑張りたいと思います。
・英語での発表だったので不安があったが、うまくできて大変良かったです。今までの取り組みの成果が出せて大変嬉しく思いました。
・回数を重ねていきうちにだんだんうまくなっているように感じました。更に頑張って国際科学会議にのぞみたいと思います。

●仮説の検証
他校の生徒の取り組みを見ることにより大きな影響を受けたようである。感想からも分かるように自分達の取り組みを他校の生徒にみて貰うことによりモチベーションが高まっている様子がみられた。今後ともこのような機会に積極的に参加していきたいと感じた。
大阪府生徒研究発表会（サイエンスフェスティバル）における発表

（1）仮説の設定
大阪府のＳＳＨ校が中心となり、大阪府全体で理科学的な研究大会を実施することは理数教育の推進につながり、生徒たちのモチベーションを高めるであろう。

（2）実施概要
日時　平成21年3月25日（水）
場所　大阪国際交流センター
参加者　本校生徒1,2年生

●本校の発表内容
A）物理分野　「デジタル回路の演算と記憶のしくみとアナログ的変化に対する応答」
①発表者　1年生　池田敦俊 亀山亮平 菅原悠馬 中打木駿
②指導者　文田憲行
③発表内容
デジタル回路についての演算・記憶システムを調べ、ディジタル回路の作製と計測実験を行う。

B）物理分野「デジタル回路の動作としくみ」
①発表者　1年生　安藤希恵 池川萌 石田一彩
②指導者　文田憲行
③発表内容
OR回路、NOT回路、RSフリップフロップなど、演算や記憶の基本となるデジタル回路を紹介。回路の動作を、スイッチ、LED、デジタルマルチメーターなどを用いて実演・説明する。トランジスターやダイオードなどのより基本的な電子部品を用いてディジタル回路を作製し、回路のしくみを理解することを試みる。

C）化学分野　「分光光度計を用いた物質の定量」
①発表者　2年生　野内直子、北内久美、桐山佳保里、工藤仁美、西村祐希奈、藤原理絵 村田野加
②指導者　福野勝久
③発表内容
分光光度計を用いさまざまな吸光度を測定しながら物質の量を決定し、化学反応の追跡考察を試みた。

D）化学分野「磁性流体の製作について」
①発表者　2年生　須川恭至、磯部寛士、真川竜太、森田将貴
②指導者　福野勝久
③発表内容
「スーパーボール」と「磁性流体」をつくった。スーパーボールについては、ラテックスを使用するもの、水ガラスを使用するものの二つの方法があり両方を行った。
E) 生物分野「昆虫のフェロモン」
①発表者
 2年生 西浦珠央、村田紫織、野土希実、海道奈津美、鎌田英里子、堀文香
②指導者 野口俊一
③発表内容
 アリが分泌する道しるべフェロモンの効果とその分泌部位を検討した。また、その物質構造の決定の一環として種種の物質が道しるべフェロモンと同じ効果を持つかを確認した。

F) 数学分野「席替えの完全順列」
①発表者 1年生 武智大喜, 吉田将也, 由比直樹
②指導者 深川 久
③発表内容
 くじによる席替えで席が変わらない人数の期待値を調べた。完全順列という考え方を取り入れた。n人の場合の期待値の式を立て、クラス人数によらず期待値は1と予想した。

G) 数学分野「正五角形の不思議」
①発表者 1年生 幸寺健吾, 長宮大輝, 小西保彰
②指導者 深川 久
③発表内容
 正五角形の面積をいくつもの方法で求め、同じ面積が一見違って見える2通りの式で表されることに気がつきた、両者が確かに一致することを示した。これをきっかけに正五角形の不思議に興味をもち、黄金比、正五角形の作図法など、正五角形にまつわる数学を様々な側面から調べてみた。

（3）検証
理科分野については、理数セミナー（課題研究）で取り組んだ内容の延長で実施を行った。また、数学分野については、入学以来実施してきた数学レポート作成で発表生徒が取り組んできたテーマに基づくものであった。大阪府の他校生との交流も含め活発な発表会が行われたが、生徒および教員にとって大変刺激のあるものであった。生徒の様子や感想からもその様子が伺えた。今後もこのような機会を意欲・技術向上の場として活用していきたいと考えている。
第8章 広報活動
1 中学校訪問授業
(1)仮説の設定
地域の小・中学校に対して、SSHの紹介と研究成果を還元する教育活動の一環として、中学校を訪問し授業を行った。このような取り組みは、小・中学生の理科・数学に対する興味・関心を高め、地域の今後のSSH事業への積極的な参加を期待できる。

(2)実施概要
A) 講義「ゾウリムシ Paramecium caudatum の観察」
日時　平成20年7月1日（火）
場所　大阪市立花乃井中学校3年生
担当者 野口俊一
内容　目で見えないような微小な生物も人間と同じように反応し生きていることを感じてもらえることを目的とした。中学校にある顕微鏡を使用し、個々のベースでできる所まで実験をして満足度を高めた。このような工夫をした結果、食胞の形成・収縮胞の観察・刺胞の放出実験を実施した。
B) 講義「デンプンについて」
日時　平成20年7月3日（水）
場所　大阪市立市岡中学校3年生
担当者 筒井啓行
内容　中学生でもよく知っているデンプンを題材に、高校理科でどのように学び、またどのように利用しているか理解してもらう目的で市岡中学校進路指導部が企画した「高校での授業を体験する」の理科の講師として参加した。希望者28名に対して演示実験、分子模型や化学構造式カード等を利用しながら授業した。
C) 講義「オイラーの多面体定理」
日時　平成20年10月21日（火）
場所　大阪市立高倉中学校3年生
担当者 長谷川幸子
内容　多面体の辺、頂点、面の数の関係について考察させるため、高倉中学校3年生20名に対してオイラーの多面体定理についての授業をした。四面体など簡単な多面体で辺、頂点、面の数の関係について例示し、生徒が自由にかいたどんな多面体においてもオイラーの多面体定理が成り立っていることを確認した。それから実際に折り紙を用いて多面体を作った。
D）講義「無限へのチャレンジ」
日時 平成20年11月7日（金）
場所 大阪市立友渕中学校3年生
担当者 宮城憲博
内容
√2、黄金数、フィボナッチ数等の数に見られる無限性についての教材を開発し友渕中学校3年生2クラスで講義を行った。√2、黄金数が無理数であることや、連分数表示や図形の中に見られる美しさについて紹介。またフィボナッチ数と自然界との関わりなどについても考察した。工作も行った。

E）講義「感覚の実験」
日時 平成20年12月10日（水）
場所 八尾市立曙川南中学校2年生
担当者 野口俊一
内容
理科をより身近のものにする事を目的にして、自分の体を実験対象として感覚の実験を曙川南中学校2年生20名に対して実施した。2年生向きに、理論中心ではなく、直感的に理解できるように授業をした。生徒と対話しながら進めることができるように教材を開発した。

（3）検証
●授業の様子・感想から
①実験後に個々に聞き取り調査をした結果、楽しかった・こんなに小さなものでも生きていることを実感したと言う意見が多くあった。刺胞の実験まで進んだ生徒は数人しかなかったが、当初の目的をほぼ達成した。
②アンケートがないので効果の程は十分に把握できていないが、授業後質問が多くあった。時間の制約があり十分答えることができず、高校へ進学してからの楽しみとなった。
③大手前高校では、数学の授業の中でコンピュータを使った実際にものを作ったりする機会が多い。この授業をするまでは、高校数学は計算ばかりであるというイメージを持つ生徒が多かったが、今回多面体を作ったことによって、計算だけではないということを伝えることができ、生徒も積極的に取り組んでいた。生徒が一番驚いていたことは、時間をかけて複雑に描いた多面体で、定理があてはまるということだった。内容は少し難しいと感じた生徒が多かったが、さらに勉強し、新しい知識をどんどん吸収していきたいと言っていた。
④少し難しい内容も含んでいたが、ちょうど中学校で学習している内容にも関係していたので興味を持って聞いてもらった。
⑤2年生が対象であったのでできるだけ直感的に理解できる教材を用意したが、それは成功であった。
また、受講した生徒達の感想文とアンケートもおおむね好評であった。

●仮説の検証
ある中学校ではアンケートの中でSSHの認知度を聞いたが、回答した16名中11名（69％）が聞いたことがない、5名（31％）が聞いたことはあるが内容まで知らない、であった。SSHの認知度をあげるために、今後もこのような取り組みを続けていく必要がある。また、しっかりとした検証をするための調査を実施していく予定である。

2 SSH新聞
（1）仮説の設定
地域の小中学校および同世代の高校生に対して、研究成果を還元する一環として、大手前SSH新聞を発行することは、多くの人がこの事業に関心をもち参加することにつながる。
（2）実施概要
①編集部員を一年生から募集した。
②生徒編集部員と教師編集部員からなる編集会議を定期的に開き、掲載する内容を検討した。
③多くの人に関わってもらうため、編集部員が中心となり記事の執筆や写真の提供を該当者に依頼に行った。
④集めた記事を編集部員が校正し配置を決め新聞にした。
今年度は12月と2月に二回発行し、本校の全生徒・全教員と本校の学校説明会に参加した中学生・小学生とその保護者に配布した。また、他校の高校生等にも順次配布した。
（3）検証
今回は十分な検証ができなかった。ある程度の部数を発行した次年度に調査をする予定である。
第9章 研究課題への取り組みの効果とその評価

1 評価の対象・観点・方法

(1) 評価の対象・観点

第一年次の目標『見つけよう「科学するこころ」（SSHへのスムーズな移行）』がどの程度達成できたかについて、以下の項目について評価する。
A) プレゼンテーションの基本となる技術の習得が図れたか。また、高校生国際科学会議開催に向けてのプレゼンテーション技術・英語力が身についたか。
B) 研修、講演会等を行い、生徒たちの科学に対するモチベーションを高めることができたか。
C) 論理的説明能力を鍛える取り組みが実践できたか。
D) 保護者や中学生に対しSSHの意義を伝えることができたか。
E) SSH運営指導委員会及びSSH運営委員会等の校内組織を発足させ、学校全体でSSH事業に取り組めたか。

(2) 評価の方法

根拠1 : SSH意識調査（生徒・保護者・教員 対象）
根拠2 : 本校独自SSHアンケート（生徒用・教員用 対象）
根拠3 : 各取り組みごとのアンケート、感想文、聞き取り調査等
（なお、表のデータ数値は%である）

2 取り組みの評価

A) 1年次にプレゼンテーションの基本となる技術の習得が図れたか。また、高校生国際科学会議開催に向けてのプレゼンテーション技術・英語力が身についたか。

●かなりの成果が得られたものと考える。国語力（読む・書く）から始まり英語でのプレゼンテーションにつなげていくプログラムは、本校の取り組みの中でも重要なものの1つであった。教科間の連携と明確な目的設定のため、生徒・保護者・教員の評価が高かったものと考える。

(理由)

①「まこと」の実施前・後にったアンケート（第4章参照）の中で、英語による発表についてポイントに大きな成果の結果が見られる。
これによって、生徒は英語でのプレゼンテーションに慣れてきていることが分かった。発表についてはメモを見ず、聴衆を意識して指導していたが、それが大変良かったと考えている。

<table>
<thead>
<tr>
<th>内 容</th>
<th>実施前</th>
<th>→</th>
<th>実施後</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然な英語で流暢に話せたか</td>
<td>17.5</td>
<td>→</td>
<td>51.3</td>
</tr>
<tr>
<td>聴衆の方をみて英語で話せたか</td>
<td>28.8</td>
<td>→</td>
<td>68.0</td>
</tr>
<tr>
<td>笑顔でリラックスして英語で話せたか</td>
<td>8.8</td>
<td>→</td>
<td>34.6</td>
</tr>
<tr>
<td>以前より英語で発表する自信がついたか</td>
<td>データなし</td>
<td>→</td>
<td>66.7</td>
</tr>
</tbody>
</table>

（根拠3 アンケート）
②生徒用アンケート結果より、プレゼンテーション力の向上に高いポイントが得られた。日本語によるレポート作成から英語のプレゼンテーションに至る一連のプログラムが充実している結果が見て取れる。また、国際交流での発表、他校（SSH校）での英語によるプレゼンテーション発表など、その成果を発表できることが国際性の向上に役だったものと考えている。

<table>
<thead>
<tr>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>国際性の向上に役立った</td>
</tr>
<tr>
<td>レポート作成・プレゼンテーション力が向上した</td>
</tr>
<tr>
<td>英語による表現力、感覚が向上した</td>
</tr>
<tr>
<td>インターンシップを高める学習が特に良かった</td>
</tr>
<tr>
<td>英語で表現する力を高める学習が特に良かった</td>
</tr>
</tbody>
</table>

(根拠 1 生徒用)

<table>
<thead>
<tr>
<th>内 容</th>
<th>そう思う</th>
<th>普通</th>
<th>そう思いわない</th>
</tr>
</thead>
<tbody>
<tr>
<td>国際会議は有意義でしたか</td>
<td>56</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

(根拠 2 生徒用)

③保護者アンケート結果より、次の設問に対し高いポイントが得られた。保護者の目から見ても、国際性に重点を置いた本校のSSH事業の取り組みが理解されているものと判断できる。

<table>
<thead>
<tr>
<th>内 容</th>
<th>意識していた</th>
<th>効果があった</th>
</tr>
</thead>
<tbody>
<tr>
<td>国際性の向上に役立つ（役立った）</td>
<td>55.4</td>
<td>68.9</td>
</tr>
</tbody>
</table>

(根拠 1 保護者用)

B)研修、講演会等を行い、生徒たちの科学に対するモチベーションを高めることができたか。

●生徒の科学に対する興味・関心をかなり高めることができた。各行事での生徒の様子や感想からも各章で述べたとおり、生徒の反応は強く、アンケートの結果からもその様子がうかがえる。また、科学オリンピック・コンクールの参加者数・入賞者数もその成果の現れの一部ではないかと考える。

(理由)

①生徒用アンケート結果より、科学技術への興味・関心に関しての設問に対し、高いポイントが得られた。

興味・関心を高めることはそれだけにとどまらず、学習意欲へも深く影響すると考えられる。この結果より推測できる。
内容	増した	もともかつった	効果なし
科学技术への興味・関心は増したか 76.3 8.8 6.3
科学技术への学習に意欲は増したか 72.5 6.3 8.8

（根拠1 生徒用）

②生徒用アンケート結果より、研修・講演会に対しての高いポイントが得られた。研修、講演会等の取り組みはSSHプログラムにおいて、興味・関心・意欲を高めるのに強く関係しており、相乗効果により生徒により効果的に影響していることが見て取れる。

内容	そう思う	普通	そう思わない
東京研修是有意義でしたか 74 4 2
特別講演是有意義でしたか 65 5 1

（根拠2 生徒用）

③宿泊研修（集中講座Ⅰ・集中講座Ⅱ）の生徒感想（第3章参照）からは、科学への関心が高まったことや、英語力の必要性を感じた生徒が多数いたことが分かった。またその後の生徒の変容として、以後に予定していた語学研修の参加が急増したことや、発表会への積極的な参加が目立つようになった。（根拠3）

C) 論理的説明能力を鍛える取り組みが実践できたか。

●プレ・サイエンス探究の中で「数リンピック」を実施した。これについては大変優れた成果物も完成した。また、「大手前高校数学談話会」、数学プレゼンテーション大会も実施できた。スーパーサイエンスハイスクール研究発表会で「ポスターセッション賞」に選ばれたのもこれら取り組みの延長上にあるものと考えている。

(理由)
①成果物 「数リンピック第1集」の作成
②「大手前高校数学談話会」の実施
③数学特別講義の実施
統計、社会の中の科学、コンクール等についての講義の実施　（第2章参照）
①教員用アンケート結果より、教員が発展的な内容を重視してとりくんできることが分かれる。また、生徒の理数に対する理論・原理への興味の向上に関して一定の手応えを感じていることも分かった。
D)保護者や中学生に対しSSHの意義を伝えることができたか。

●保護者については、各行事における生徒の様子からそれなりの効果を感じているようである。しかし、日々の学習や進学指導とは切り離して考えられている傾向もみられる。このようにおおむねSSHの意義は伝わっているようであるが、誤解の生じないように今後とも成果を発信し、理解を求めていく必要があるであろう。

また、地域の中学生に対しては「SSH中学校訪問授業」（第8章参照）の形で本年度は実施したが、機会のあった中学生に対しては伝えられることはできたがそれでも不十分であると考えている。今後はWeb等も活用しさらに拡大していきたい。

（理由）
①保護者用アンケート結果より、取り組みに対する期待には応えられた結果が得られた。一方で、理・数に対する能力が向上したというポイントは下がった。

<table>
<thead>
<tr>
<th>内 容</th>
<th>意識</th>
<th>効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>理・数の面白そうな取り組みに参加できる（できた）</td>
<td>85.1</td>
<td>87.8</td>
</tr>
<tr>
<td>理・数に対する能力やセンス向上に役立つ（役だった）</td>
<td>77.0</td>
<td>70.3</td>
</tr>
</tbody>
</table>

（根拠1 保護者用）

②生徒の様子からSSHへの理解はおおむね得られていると判断できる。

<table>
<thead>
<tr>
<th>内 容</th>
<th>はい</th>
<th>いいえ</th>
</tr>
</thead>
<tbody>
<tr>
<td>子供の科学技術への興味・関心は増したか？</td>
<td>85.1</td>
<td>1.4</td>
</tr>
<tr>
<td>子供の科学技術への学習意欲は増したか？</td>
<td>78.4</td>
<td>6.8</td>
</tr>
</tbody>
</table>

（根拠1 保護者用）

③中学生に対しては訪問授業の感想等（第8章参照）により説明する機会は得られた。
しかし、更なる広報としてWeb等の活用なども今後の課題として考えている。

（根拠3）

E) SSH運営指導委員会及びSSH運営委員会等の校内組織を発足させ、学校全体でSSH事業に取り組めたか。
SSH運営指導委員会及びSSH運営委員会等の校内組織を発足させ、学校全体でSSH事業に取り組めるよう努めた。また、多くの教員がSSHに対して意義があるという意識を持つことがわかった。全体協力がSSH事業全体の成功につながるという考えから、初年度ということもあり組織作りに取り組んだが、まだ不十分であり、学校全体で取り組んでいるとは言い難い状態である。今後はSSH事業に関係する教員も増えてくるので、積極的に情報発信しこの結果のポイントを高くしていきたいと考えている。

（理由）
①26回の運営会議を持ち、代表者8人を中心に全体の企画が進めることができた。
②ほぼ毎回の職員会議でSSHの取り組み内容について報告をし、進捗状況についての情報を共有できた。
③SSHに対して意義があるという意識を持つ教員が多いことがわかった。

<table>
<thead>
<tr>
<th>内 容</th>
<th>そう思う</th>
<th>普通</th>
<th>思わない</th>
</tr>
</thead>
<tbody>
<tr>
<td>教員に情報が伝わっているか？</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>学校全体で取り組んでいるか？</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>SSHは有意義だと思いますか</td>
<td>15</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

（根拠1 教員用）

（4）全体としての評価
SSH意識調査・SSHアンケート・各事業での検証等から、SSHに参加したことで科学技術に関する興味・関心・意欲が増したとする生徒（76.3％）が、効果がなかったとする生徒（8.8％）を大きく上回り、素晴らしい成果が得られた。また、理科・数学に対し期待していた生徒（71.3％）が、SSH事業後に増加（85％）していたのは特に重要と考えている。更には、SSHの行事に参加できたことを嬉しく思う今後とも積極的に参加していきたいという生徒が80％となった。これらの結果から、生徒の意欲・関心を高めるという観点からはほぼ予定通り進行していると考える。また、本年度は日本数学オリンピック（成績優秀者）、化学グランプリ（大賞）を始め、科学オリンピック・コンクールでは過去最高の入賞・参加者があった。SSHによる効果の現れと考えられる。
第10章 研究開発実施上の課題および今後の研究開発の方向

1 研究開発実施上の課題

本校では研究開発課題として、
(A) コミュニケーション力をベースにした、国際感覚豊かな「科学分野における日本や世界のリーダー」を育成するプログラムの開発
(B) 論理的に分析・判断・検証する力の育成を通じて、広い視野に立った「科学するこころ」の醸成と高度な専門性を有する次代の科学者の養成
(C) 環境・生命などの全地球的視点に立ったものの見方を身につけ、世界に向けての積極的な情報発信の実践的研究
について、研究を進めている。特に初年度となる本年は、『見つけよう科学するこころ』（SSHへのスムーズな移行）をテーマに校内の組織作りから始まりいろいろな取り組みを始めた。初年度を終了し、各担当者から今後の研究開発施上の問題点として以下のものが提示された。

(1) プレ・サイエンス探究
① 『大手前数リンピック』
より多くの生徒の参加ができるような教材の開発
② 『数学レポート』作成指導
数学学習の基幹部分をなす「SS数学」への正のフィードバックの促進
③科学コンクール
参加する意欲の向上と支援のシステム作り
④ 特別講演・講義の実施
より効果を上げるためのスケジュール調整と他の事業との接続法

(2) 宿泊研修
① 『集中講座Ⅰ』（東京研修）
プログラムの精選による過密スケジュールの解消
② 『集中講座Ⅱ』（サマースクール）
プレゼン発表の内容・技術の充実

(3) 学校設定科目
① 『理想（まこと）』
校内行事とSSH行事のスケジュール調整による効率化
② 『信念（のぞみ）』
統計学への意欲を高める工夫・教材研究
③ 『SS物理』
土曜講座のプログラムと講義内容との教材調整
④ 『SS化学』
講義と実験とのバランスとコンピュータ機器の活用
⑤ 『SS生物』
身の回りの自然調査、博物館レポートの充実
6 『SS数学』
発展的内容の教材精選と課題研究への接続

(4) 『サイエンス探究』
次年度から本格的に始まる生徒の希望調整の方法

(5) 『高校生国際科学会議』
①サイエンス探究発表
発表国との交流など国際マナーについての指導法
②語学研修
できるだけ多くの生徒の参加を促すための日程調整

2 今後の研究開発の方法

第二年次（平成21年度）としては、本年度の研究成果を踏まえ『育てよう「科学するこころ」（SSH本格実施）』をテーマに研究開発を進めていく。高校生国際科学会議を中心に据えて、

①プレゼンテーション能力の開発プログラムの完成
『理想（まこと）』、『集中講座 II』(サマースクール)、語学研修をうまく接続することにより効果的・効率的なプレゼンテーション力向上を図る。

②論理的思考能力の育成のための企画充実
『大手前数リンピック』、『数学レポート』、科学コンクール、『大手前高校数学談話会』の充実を図り、『大手前数リンピック第2集』（成果冊子）の作成や作品資料の整理を行う。また評価の方法について研究を深める。

③地域への成果の還元、研究成果の外部への発信
『SSH中学校出張講義』、『SSH新聞』の本格的実施などを行い、Webの活用等も研究を深める

に重点をおき取り組んでいく。
多くの生徒の参加ができる教材開発とフィードバック、スケジュール調整と他事業との接続法、プレゼン発表の内容・技術の充実、統計学への意欲を高める工夫・教材研究・活用法の研究、サイエンス探究、国際会議におけるマナーについての指導などに取り組んでいく。
平成20年度大阪府立大手前高等学校
全日制の課程理数科（SSH認定） 教育課程実施計画

学校整理番号 201

<table>
<thead>
<tr>
<th>入学年度</th>
<th>20</th>
<th>類型</th>
<th>理数</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>学年</td>
<td>1年</td>
<td>2年</td>
<td>3年</td>
<td>1年</td>
<td>2年</td>
<td>3年</td>
<td></td>
</tr>
<tr>
<td>教科</td>
<td>科目</td>
<td>単位</td>
<td>前期</td>
<td>後期</td>
<td>前期</td>
<td>後期</td>
<td>前期</td>
</tr>
<tr>
<td>国語総合</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>現代文</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>古典</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>古典講読</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>（学）国語演習</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>世界史A</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>世界史B</td>
<td>4</td>
<td>△2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>日本史A</td>
<td>2</td>
<td>△2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>日本史B</td>
<td>4</td>
<td>△2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>地理A</td>
<td>2</td>
<td>△2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>地理B</td>
<td>4</td>
<td>△2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>（学）地歴演習</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>現代社会</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>備理</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>政治・経済</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>（学）公民演習</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>体育</td>
<td>7〜8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>保健</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>音・美・書Ⅰ</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>オーラル・コミュニケーションⅠ</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>英語I</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>英語II</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>リーディング</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ライティング</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>家庭基礎</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>情報C</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>（学）信念（まこと）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>（学）理想（のぞみ）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>（学）SS数学Ⅰ</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>（学）SS数学II</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>（学）SS数学III</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS物理</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS化学</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS生物</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）サイエンス探究</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）集中講座Ⅰ「集中セミナー」</td>
<td>☆</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>（学）集中講座Ⅱ「サマースクール」</td>
<td>★</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>家庭基礎</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>情報C</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>（学）信念（まこと）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>（学）理想（のぞみ）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>（学）SS数学Ⅰ</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>（学）SS数学II</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>（学）SS数学III</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS物理</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS化学</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）SS生物</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）サイエンス探究</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>（学）集中講座Ⅰ「集中セミナー」</td>
<td>☆</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>（学）集中講座Ⅱ「サマースクール」</td>
<td>★</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>家庭基礎</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>情報C</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>教科・科目の計</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>15</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホームルーム活動</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>総合的な学習時間</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>総計</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考：学年 1年 2年 3年
計学級数 2 2 2
入学年度 20
類型 理数

関係資料
1 教育課程表

平成20年度大阪府立大手前高等学校
全日制の課程理数科（SSH認定） 教育課程実施計画

学校整理番号 201

入学年度別、類型別、教科・科目単位数

教科・科目単位数

特別活動
～ Homeroom 活動
～ 名称『総合研究』
～ 選択の方法
～ から 1 科目

備考：学年 1年 2年 3年
計学級数 2 2 2
入学年度 20
類型 理数

関係資料
1 教育課程表

平成20年度大阪府立大手前高等学校
全日制の課程理数科（SSH認定） 教育課程実施計画

学校整理番号 201

入学年度別、類型別、教科・科目単位数

教科・科目単位数

特別活動
～ Homeroom 活動
～ 名称『総合研究』
～ 選択の方法
～ から 1 科目

備考：学年 1年 2年 3年
計学級数 2 2 2
入学年度 20
類型 理数
2 研究組織の概要

【SSH運営指導委員会】

斎藤良昭 大阪府立大手前高等学校校長 SSH運営指導委員会委員長
戸田 徹 大阪府立大手前高等学校教頭 SSH運営指導委員会副委員長
赤池敏宏 東京工業大学大学院教授 SSH運営指導委員会委員
川中宣明 大阪大学大学院教授 SSH運営指導委員会委員
河野 明 京都大学大学院教授 SSH運営指導委員会委員
田畑泰彦 京都大学再生医科学研究所教授 SSH運営指導委員会委員
森 講介 関西電力(株)取締役社長 SSH運営指導委員会委員
栗山和之 大阪府教育委員会教育振興室高等学校課課長
並河 宏 大阪府教育委員会教育振興室高等学校課教務グループ首席指導主事
網代典子 大阪府教育委員会教育振興室高等学校課教務グループ指導主事
脇島 修 大阪府教育センター 教科教育部理科第一室室長
宫本憲武 大阪府教育センター 教科教育部理科第一室主任指導主事
松本 透 大阪府教育センター 教科教育部専門教育室主任指導主事

【SSH運営委員会・研究主担者】

氏名 職名 担当教科 担当
戸田 徹 教頭 数学 SSH運営委員長
宮城健博 教諭 数学・情報 SSH研究開発主任、企画
石若達弥 教諭 国語 「まこと」
深川 久 教諭 数学 プレ・サイエンス探究、「のぞみ」
文田憲行 教諭 物理 書記・報告
松山晴彦 教諭 化学 サイエンス探究
野口俊一 首席 生物 広報
米田 隆 教諭 英語 国際科学会議、「まこと」
酒井 徹 事務部長 事務 SSH事務
平成20年度大阪府立大手前高校SSH運営指導委員会の報告
日時 12月15日（月） 14:15～16:40
会場 大阪府立大手前高等学校 校長室
進行司会 大手前高校教頭 戸田 徹

① 開会挨拶
大阪府教育委員会教育振興室高等学校課参事 津田 仁

大手前高校は理数科において様々な取り組みをされており8月の研究発表大会で1年目ながらポスターセッション賞を受賞された。今までの取り組み、そして今後の発展性が評価されていると言うことで教育委員会としても大きな喜びであり誇りを感じている。本日の運営指導委員会は学識経験者の方々にSSH運営に関して専門的様々な見地から指導助言、評価をして頂くものとされている。委員の先生方には趣旨を理解の上、指導助言をお願いしたい。

②出席者の紹介（敬称略）
SSH運営指導委員会委員
赤池敏宏 東京工業大学大学院教授
川中宣明 大阪大学大学院教授
河野 明 京都大学大学院教授
田畑泰彦 京都大学再生医科学研究所教授
森 訳介 関西電力（株）取締役社長
大阪府教育委員会
津田 仁 大阪府教育委員会教育振興室高等学校課参事
恩知忠司 大阪府教育委員会教育振興室高等学校課主任指導主事
網代典子 大阪府教育委員会教育振興室高等学校課教務グループ指導主事
脇島 修 大阪府教育センター 教科教育部理科第一室室長
宮本憲武 大阪府教育センター 教科教育部理科第一室主任指導主事
松本 透 大阪府教育センター 教科教育部専門教育室主任指導主事

③学校長挨拶 斎藤良昭 氏
4月初めにSSHに指定されたものではあるが、府の教育委員会からエル・ハイスクールに指名された5年間の中で培われた取り組みが、SSHの取り組みの基礎となっている。国にそれをより伸ばしなさいという形で指名を受けたものと考えている。国際教育・理数教育そしてコミュニケーション力を訴えさせて頂いた、それが高いレベルで融合したものとして高い能力の生徒が育成できればと思っている。大手前のSSHが次の世界に通用する研究者を作ると言えるように頑張っていきたい。

④SSH関連行事についての取り組み報告（報告者：深川、石若、米田、宮城）
⑤今後の予定についての報告（報告者：宮城）
内容協議

委員：若い人の理系離れが進んでいる。私たちも若い人たちに関心を持って貰おうとしている。今回の発表では、生徒の関心の持って取り組みをしていのがうれしく思う。数日でまとめたというのにはびっくりした。先生は緊張していると言われたがそうでもないようであった。偏見を持たずに素直に課題に対してまとめ、意見を述べているのは非常に感心した。素直さをどんどん伸ばして育てて欲しいと思った。

委員：生徒の発表を聴きながら自分の高校時代を思い出した。高校1年の最初の時期に先生から「高校生は大人だから自分の考えを持っていい」ということを言われ感心した。それまでは人に気に入られるようにという考えがあったが、自分の考えを素直に出していくことを先生に教わった。是非今の高校生にも伝えて欲しい。発表の質問の中に自分たちの調べてきたものがない場合、ごまかさずここまで調べたがここは分かりませんと明確に言って欲しい。

委員：先生の熱い愛情があれば心配なく順調にいくだろう。消化不要になるくらいプログラムが組まれていて学生たちが応えてくれるか少し不安もある。あまり型にはまらないようにすることも必要かも知れない。基本的には素晴らしいと思うが、質問されたときすぐ相談してチームプレイでその場で答えを作り出していく問題解決力は鍛えた方がよい。質問もケーススタディで学習すればよいが緊張感が足らないところもあった。暖かい指導と厳しい指導が必要。早い時期から英語は身に付けた方がよいが、やる気を持つようにしないと生徒はついてこないだろう。

委員：質問で聞かれている内容とずれている回答があった。質問者がもう一度意図を言って欲しかった。聞かれている方も常識で考えれば分かることもあるので「考えてみるということではないでしょうか」位は応えて欲しい。数学では自分の頭で考えることが大切。英語はできないと困るが、母国語で考えないと本当の力がつかない。英語のときは聞き取る力が厳しいが分からなくても聴こうという姿勢が大切である。くらっついていく力をつけて欲しい。大学院生とかの派遣の面で教育委員会のサポートもお願いしたい。

委員：委員会の方でもノウハウの機会を作って欲しい。

委員会：SSHでもやっている。

委員：こちらにもノウハウがある。広島に出張授業、その後食事をしながら話をする。そのときの学生はいい。海外から来ている大学院生も来ているので招いて話をする。院生がついて行って通訳する、というのもあった。今の高校生は話するのが上手だが、すこしなめたところがある。発表は内容・話し方・受け答えの3つがいる。2つ残念なことがあった。発表の時原稿を読んでいた。文章を読んでいても何を言っているのか分からない。
指示棒をもってしゃべったり、顔を見たりするのもプレゼン能力である。質問者の顔も見ずに座って回答していたのは全然ダメである。英語と日本語のプレゼンは全然違う。どういった風にするかを考える必要がある。英語での受け答えは慣れないと難しい。国際科学会議で何を協力すればよいか教えて欲しい。

担当：TA派遣、院生による指導、プレゼンの仕方などを個別に相談させて頂く。
センター：理科的な内容で誤った使い方も見られるので、少し理科の先生方の手が入る方がよいと思う。

⑦閉会挨拶
4 アンケート資料

●SSH意識調査（生徒用 一部省略）

■ヘッダー情報

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>その他</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>男</td>
<td>55</td>
<td>68.8</td>
</tr>
<tr>
<td>女</td>
<td>22</td>
<td>27.5</td>
</tr>
<tr>
<td>無回答</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■問1 SSH参加による利点の意識と効果

・(1) 理科・数学の面白そうな取組に参加できる（できた）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>していた</td>
<td>57</td>
<td>71.3</td>
</tr>
<tr>
<td>していなかった</td>
<td>23</td>
<td>28.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(2) 理科・数学に関する能力やセンス向上に役立つ（役立った）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>していた</td>
<td>52</td>
<td>65.0</td>
</tr>
<tr>
<td>していなかった</td>
<td>27</td>
<td>33.8</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(3) 理系学部への進学に役立つ（役立った）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>していた</td>
<td>40</td>
<td>50.0</td>
</tr>
<tr>
<td>していなかった</td>
<td>39</td>
<td>48.8</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(4) 大学進学後の志望分野探しに役立つ（役立った）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>あった</td>
<td>46</td>
<td>57.5</td>
</tr>
<tr>
<td>なかった</td>
<td>30</td>
<td>37.5</td>
</tr>
<tr>
<td>無回答</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(5) 将来の志望職種探しに役立つ（役立った）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>していた</td>
<td>30</td>
<td>37.5</td>
</tr>
<tr>
<td>していなかった</td>
<td>49</td>
<td>61.3</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(6) 国際性の向上に役立つ（役立った）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>あった</td>
<td>64</td>
<td>80.0</td>
</tr>
<tr>
<td>なかった</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td>無回答</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>
■ 問2　SSHに参加したことで、科学技術に関する興味・関心・意欲が増したか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>17</td>
<td>21.3</td>
</tr>
<tr>
<td>やや増した</td>
<td>44</td>
<td>55.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>わからない</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■ 問3　SSHに参加したことで、科学技術に関する学習に対する意欲が増したか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>14</td>
<td>17.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>44</td>
<td>55.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>わからない</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■ 問4　SSHに参加したことで、学習全般や理科・数学に対する興味、姿勢、能力にどれくらいの向上があったか

・ (1) 未知の事柄への興味（好奇心）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>18</td>
<td>22.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>40</td>
<td>50.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>12</td>
<td>15.0</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>わからない</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・ (2) 理科・数学の理論・原理への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>15</td>
<td>18.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>32</td>
<td>40.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>19</td>
<td>23.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>わからない</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・ (3) 理科実験への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>29</td>
<td>36.3</td>
</tr>
<tr>
<td>やや増した</td>
<td>30</td>
<td>37.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>9</td>
<td>11.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>わからない</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・ (4) 観測や観察への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>11</td>
<td>13.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>36</td>
<td>45.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>21</td>
<td>26.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>わからない</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
<tr>
<td>カテゴリー</td>
<td>件数</td>
<td>比率</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>大変増した</td>
<td>11</td>
<td>13.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>38</td>
<td>47.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>19</td>
<td>23.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>わからない</td>
<td>9</td>
<td>11.3</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>18</td>
<td>22.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>29</td>
<td>36.3</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>21</td>
<td>26.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>わからない</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>15</td>
<td>18.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>28</td>
<td>35.0</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>24</td>
<td>30.0</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>わからない</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>やや増した</td>
<td>26</td>
<td>32.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>29</td>
<td>36.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>わからない</td>
<td>16</td>
<td>20.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>
(13) 真実を探って明らかにしたい気持ち（探究心）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>21</td>
<td>26.3</td>
</tr>
<tr>
<td>やや増した</td>
<td>35</td>
<td>43.8</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>わからない</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(14) 考える力（洞察力、発想力、論理力）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>42</td>
<td>52.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>わからない</td>
<td>15</td>
<td>18.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(15) 成果を発表し伝える力（レポート作成、プレゼンテーション）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>34</td>
<td>42.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>35</td>
<td>43.8</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>わからない</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(16) 国際性（英語による表現力、国際感覚）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>26</td>
<td>32.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>29</td>
<td>36.3</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>15</td>
<td>18.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>わからない</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

問5 問4の(1)～(16)のうち最も向上したと思う興味、姿勢、能力（3つまで）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>未知の事柄への興味（好奇心）</td>
<td>25</td>
<td>31.3</td>
</tr>
<tr>
<td>理科・数学の理論・原理への興味</td>
<td>16</td>
<td>20.0</td>
</tr>
<tr>
<td>理科実験への興味</td>
<td>22</td>
<td>27.5</td>
</tr>
<tr>
<td>観測や観察への興味</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>学んだことを応用することへの興味</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>社会で科学技術を正しく用いる姿勢</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>自分から取り組む姿勢（自主性、やる気、挑戦心）</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>場面と協力して取り組む姿勢（協調性、リーダーシップ）</td>
<td>19</td>
<td>23.8</td>
</tr>
<tr>
<td>場面と協力して取り組む姿勢（協調性）</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>独自なものを創り出そうとする姿勢（独創性）</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>発見する力（問題発見力、気づく力）</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>問題解決する力</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>真実を探って明らかにしたい気持ち（探究心）</td>
<td>12</td>
<td>15.0</td>
</tr>
<tr>
<td>考える力（洞察力、発想力、論理力）</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>成果を発表し伝える力（レポート作成、プレゼンテーション）</td>
<td>40</td>
<td>50.0</td>
</tr>
<tr>
<td>国際性（英語による表現力、国際感覚）</td>
<td>35</td>
<td>43.8</td>
</tr>
<tr>
<td>無回答</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>
問6 これまでSSHに参加していましたか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>今年度初めて参加</td>
<td>80</td>
<td>100.0</td>
</tr>
<tr>
<td>昨年度から参加</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>一昨年度から参加</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

問7 これまでに参加したSSHの取組はどれですか（いくつでも）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)理科や数学に多くが割り当てられている時間割</td>
<td>53</td>
<td>66.3</td>
</tr>
<tr>
<td>(2)科学者や技術者の特別講義・講演会</td>
<td>73</td>
<td>91.3</td>
</tr>
<tr>
<td>(3)大学や研究所、企業、科学館等の見学・体験学習</td>
<td>74</td>
<td>92.5</td>
</tr>
<tr>
<td>(4)個人や班で行う課題研究（自分の高校の先生や生徒との間で行うもの）</td>
<td>73</td>
<td>91.3</td>
</tr>
<tr>
<td>(5)個人や班で行う課題研究（大学等の研究機関と一緒に、あるいは、指導を受けて行うもの）</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>(6)個人や班で行う課題研究（他の高校の先生や生徒と一緒に、あるいは、指導を受けて行うもの）</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>(7)科学コンテストへの参加</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>(8)観察・実験の実施</td>
<td>20</td>
<td>25.0</td>
</tr>
<tr>
<td>(9)フィールドワーク（野外活動）の実施</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td>(10)プレゼンテーションする力を高める学習</td>
<td>78</td>
<td>97.5</td>
</tr>
<tr>
<td>(11)英語で表現する力を高める学習</td>
<td>65</td>
<td>81.3</td>
</tr>
<tr>
<td>(12)他の高校の生徒との交流</td>
<td>11</td>
<td>13.8</td>
</tr>
<tr>
<td>(13)科学系クラブ活動への参加</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>無回答</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

問8 問7の(1)〜(13)のうち参加して特によかったと思うSSHの取組は何ですか（いくつでも）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)理科や数学に多くが割り当てられている時間割</td>
<td>21</td>
<td>26.3</td>
</tr>
<tr>
<td>(2)科学者や技術者の特別講義・講演会</td>
<td>49</td>
<td>61.3</td>
</tr>
<tr>
<td>(3)大学や研究所、企業、科学館等の見学・体験学習</td>
<td>59</td>
<td>73.8</td>
</tr>
<tr>
<td>(4)個人や班で行う課題研究（自分の高校の先生や生徒との間で行うもの）</td>
<td>34</td>
<td>42.5</td>
</tr>
<tr>
<td>(5)個人や班で行う課題研究（大学等の研究機関と一緒に、あるいは、指導を受けて行うもの）</td>
<td>5</td>
<td>6.3</td>
</tr>
<tr>
<td>(6)個人や班で行う課題研究（他の高校の先生や生徒と一緒に、あるいは、指導を受けて行うもの）</td>
<td>7</td>
<td>8.8</td>
</tr>
<tr>
<td>(7)科学コンテストへの参加</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>(8)観察・実験の実施</td>
<td>14</td>
<td>17.5</td>
</tr>
<tr>
<td>(9)フィールドワーク（野外活動）の実施</td>
<td>12</td>
<td>15.0</td>
</tr>
<tr>
<td>(10)プレゼンテーションする力を高める学習</td>
<td>48</td>
<td>60.0</td>
</tr>
<tr>
<td>(11)英語で表現する力を高める学習</td>
<td>43</td>
<td>53.8</td>
</tr>
<tr>
<td>(12)他の高校の生徒との交流</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>(13)科学系クラブ活動への参加</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>無回答</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>合計</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>
問2 SSHに参加させるにあたっての利点の意識と効果

<table>
<thead>
<tr>
<th>意識</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>していた</td>
<td>63</td>
<td>85.1</td>
</tr>
<tr>
<td>していなかった</td>
<td>11</td>
<td>14.9</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

合計 74 100.0

<table>
<thead>
<tr>
<th>効果</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>あった</td>
<td>65</td>
<td>87.8</td>
</tr>
<tr>
<td>なかった</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>無回答</td>
<td>3</td>
<td>4.1</td>
</tr>
</tbody>
</table>

合計 74 100.0

- (1)理科・数学の面白そうな取組に参加できる（できた）
- (2)理科・数学に関する能力やセンス向上に役立つ（役立った）
- (3)理系学部への進学に役立つ（役立った）
- (4)大学進学後の志望分野探しに役立つ（役立った）
- (5)将来の志望職種探しに役立つ（役立った）
- (6)国際性の向上に役立つ（役立った）

問3 SSHに参加したことで、お子さんの科学技術に関する興味・関心・意欲が増したか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>14</td>
<td>18.9</td>
</tr>
<tr>
<td>やや増した</td>
<td>49</td>
<td>66.2</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>わからない</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

合計 74 100.0
■問4 SSHに参加したことで、お子さんの科学技術に関する学習に対する意欲が増したか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td>やや増した</td>
<td>46</td>
<td>62.2</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>わからない</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■問5 SSHによってお子さんの学習全般や理科・数学に対する興味、姿勢、能力にどれくらいの向上があったか

・(1) 未知の事柄への興味(好奇心)

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>46</td>
<td>62.2</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>わからない</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(2) 理科・数学の理論・原理への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>やや増した</td>
<td>45</td>
<td>60.8</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>わからない</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(3) 理科実験への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>14</td>
<td>18.9</td>
</tr>
<tr>
<td>やや増した</td>
<td>36</td>
<td>48.6</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>わからない</td>
<td>13</td>
<td>17.6</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(4) 観察や観察への興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>39</td>
<td>52.7</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>9</td>
<td>12.2</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>わからない</td>
<td>18</td>
<td>24.3</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(5) 学んだことを応用することへの興味

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>やや増した</td>
<td>40</td>
<td>54.1</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>わからない</td>
<td>18</td>
<td>24.3</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

・(6) 社会で科学技術を正しく用いる姿勢

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>やや増した</td>
<td>26</td>
<td>35.1</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>わからない</td>
<td>34</td>
<td>45.9</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
<tr>
<td>カテゴリー</td>
<td>件数</td>
<td>比率</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>大変増した</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>40</td>
<td>54.1</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>わからない</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>無回答</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>やや増した</td>
<td>44</td>
<td>59.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>わからない</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>26</td>
<td>35.1</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>14</td>
<td>18.9</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>11</td>
<td>14.9</td>
</tr>
<tr>
<td>わからない</td>
<td>13</td>
<td>17.6</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>やや増した</td>
<td>30</td>
<td>40.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>17</td>
<td>23.0</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>わからない</td>
<td>19</td>
<td>25.7</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>やや増した</td>
<td>31</td>
<td>41.9</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>わからない</td>
<td>21</td>
<td>28.4</td>
</tr>
<tr>
<td>無回答</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>やや増した</td>
<td>36</td>
<td>48.6</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>わからない</td>
<td>22</td>
<td>29.7</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>32</td>
<td>43.2</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>わからない</td>
<td>16</td>
<td>24.3</td>
</tr>
<tr>
<td>無回答</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>やや増した</td>
<td>42</td>
<td>56.8</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>わからない</td>
<td>14</td>
<td>18.9</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
<tr>
<td>カテゴリー</td>
<td>件数</td>
<td>比率</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>大変増した</td>
<td>17</td>
<td>23.0</td>
</tr>
<tr>
<td>やや増した</td>
<td>44</td>
<td>59.5</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>わからない</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>大変増した</td>
<td>18</td>
<td>24.3</td>
</tr>
<tr>
<td>やや増した</td>
<td>31</td>
<td>41.9</td>
</tr>
<tr>
<td>効果がなかった</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>もともと高かった</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>わからない</td>
<td>15</td>
<td>20.3</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■問6 お子さんに特に人気や効果があったと感じているSSHの取組はどれですか（いくつでも）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)理科や数学に多くが割り当てられている時間割</td>
<td>22</td>
<td>29.7</td>
</tr>
<tr>
<td>(2)科学者や技術者の特別講義・講演会</td>
<td>40</td>
<td>54.1</td>
</tr>
<tr>
<td>(3)大学や研究所、企業、科学館等の見学・体験学習</td>
<td>64</td>
<td>86.5</td>
</tr>
<tr>
<td>(4)個人や班で行う課題研究（お子さんの高校の先生や生徒との間で行うもの）</td>
<td>21</td>
<td>28.4</td>
</tr>
<tr>
<td>(5)個人や班で行う課題研究（大学等の研究機関と一緒に、あるいは、指導を受けて行うもの）</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>(6)個人や班で行う課題研究（他の高校の先生や生徒と一緒に、あるいは、指導を受けて行うもの）</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>(7)科学コンテストへの参加</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>(8)観察・実験の実施</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td>(9)フィールドワーク（野外活動）の実施</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>(10)プレゼンテーションする力を高める学習</td>
<td>34</td>
<td>45.9</td>
</tr>
<tr>
<td>(11)英語で表現する力を高める学習</td>
<td>30</td>
<td>40.5</td>
</tr>
<tr>
<td>(12)他の高校の生徒との交流</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>(13)科学系クラブ活動への参加</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>無回答</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■問7 お子さんの現在の大学進学志望は理系・文系のいずれですか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>理系</td>
<td>54</td>
<td>73.0</td>
</tr>
<tr>
<td>文系</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>決まっていない</td>
<td>13</td>
<td>17.6</td>
</tr>
<tr>
<td>わからない</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>大学進学を希望していない</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>

■問8 SSHの取組を行うことは、学校の教育活動の充実や活性化に役立つと思いますか

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>件数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>まったくその通り</td>
<td>49</td>
<td>66.2</td>
</tr>
<tr>
<td>ややその通り</td>
<td>23</td>
<td>31.1</td>
</tr>
<tr>
<td>どちらでもない</td>
<td>10</td>
<td>1.4</td>
</tr>
<tr>
<td>やや異なる</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>まったく異なる</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>無回答</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td>100.0</td>
</tr>
</tbody>
</table>
SSHアンケート（大手前高校 生徒用）

本年度のSSH事業に関し、今後の参考のためにアンケートを実施します。つきましては、下記の項目の該当する番号を回答欄へ記入して下さい。皆さんの意見・感想を参考にして今後の取り組みに反映したいと考えています。

●行事について
1. 東京研修は有意義だったと思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない ⑥参加していない
2. 数学特別講義（統計についての2回の講義－林先生、大沢先生）は有意義だったと思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない ⑥参加していない
3. SSH特別講演（「身近な防災・減災の知恵」河田先生）は有意義だったと思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない ⑥参加していない
4. メコン5カ国国際会議は有意義だったと思いますか？（発表の如何に関わらず）
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない ⑥参加していない

●意識について
5. SSHの行事に参加できて良かったと思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない
6. SSHの行事は忙しく負担になっていると思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない
7. SSHの行事に今後とも積極的に参加していきたいですか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない

回答欄

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
</tr>
</thead>
</table>

●意見があれば書いてください（記述）
SSH アンケート（大手前高校 生徒用） 結果

<table>
<thead>
<tr>
<th>Q</th>
<th>大変そう思う</th>
<th>そう思う</th>
<th>普通</th>
<th>余り思わない</th>
<th>全く思わない</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>49</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q2</td>
<td>14</td>
<td>23</td>
<td>25</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>37</td>
<td>28</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q4</td>
<td>22</td>
<td>34</td>
<td>16</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Q5</td>
<td>34</td>
<td>30</td>
<td>11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Q6</td>
<td>33</td>
<td>30</td>
<td>10</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q7</td>
<td>17</td>
<td>38</td>
<td>19</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Q1 東京研修は有意義だったと思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q2 数学特別講義は有意義だったと思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q3 SSH特別講演は有意義だったと思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q4 メコン5カ国国際会議は有意義だったと思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q5 SSHの行事に参加できて良かったと思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q6 SSHの行事は忙しく負担になっていると思いますか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q7 SSHの行事に今後とも積極的に参加していきたいですか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない

Q8 メコン5カ国国際会議に今後とも積極的に参加していきたいですか？
大変そう思う
そう思う
普通
あまり思わない
全く思わない
参加していない
SSHアンケート（大手前高校 教員用）

平成21年2月20日
大手前高校SSH委員会

SSHアンケート（大手前高校 教員用）

SSH事業に関して、今後の参考のためにアンケートを実施いたします。つきましては、下記の項目の該当する番号を回答欄へ記入してください。先生方の意見・感想を参考に次年度に反映したいと考えています。

●SSHの取り組みについて
1. SSH事業にご自身が何かで関わる機会があったと思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない
2. 学校全体でSSHに取り組んでいると思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない
3. SSHでの取り組みについての情報が教員に伝わっていると思いますか？
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない
4. SSHは本校にとって有意義だと思いますか。
 ①大変そう思う ②そう思う ③普通 ④あまり思わない ⑤全く思わない

回答欄

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

●ご意見があればお願いいたします（記述）
SSHアンケート（大手前高校 教員用） 結果

<table>
<thead>
<tr>
<th>Q</th>
<th>大変そう思う</th>
<th>そう思う</th>
<th>普通</th>
<th>あまり思わない</th>
<th>全く思わない</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>1</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Q1 SSH事業にご自身が何かで関わる機会があったと思いますか？
Q2 学校全体でSSHに取り組んでいると思いますか？
Q3 SSHでの取り組みについての情報が教員に伝わっていると思いますか？
Q4 SSHは本校にとって有意義だと思いますか？
平成 20 年度 スーパーサイエンスハイスクール
研究開発実施報告書
（平成 20 年度指定・第 1 年次）

発行日 平成 21 年 3 月 25 日

発行者 大阪府立大手前高等学校
〒532-0025 大阪市中央区大手前 2-1-11
電話 06-6941-0051 FAX 06-6941-3163